
Riptide Documentation

Marco Köpcke

Jan 05, 2022

Contents

1 Hello World! 3

2 Riptide config files 5

3 Documentation 7
3.1 User Documentation . 7
3.2 Configuration Guide . 35
3.3 Riptide Community Repository . 73
3.4 Plugin Development . 100
3.5 Updates . 100

Index 103

i

ii

Riptide Documentation

Riptide is a set of tools to manage development environments for web applications. It’s using container virtualization
tools, such as Docker to run all services needed for a project.

It’s goal is to be easy to use by developers. Riptide abstracts the virtualization in such a way that the environment
behaves exactly as if you were running it natively, without the need to install any other requirements the project may
have.

Contents 1

https://www.docker.com/

Riptide Documentation

2 Contents

CHAPTER 1

Hello World!

A simple hello world web service:

riptide.yml
project:
name: hello-world
src: .
app:
name: hello-world
services:

hello_world:
image: strm/helloworld-http
port: 80
run_as_current_user: false
roles:
- main

To setup the project run:

Setup project
riptide setup
Start Riptide Proxy
riptide_proxy

After the setup head over to http://hello-world.riptide.local (assuming you are using the default con-
figuration and DNS is set up). The Service will auto-start and after that you will be greeted with the message: Hello
from hello_world.

3

Riptide Documentation

4 Chapter 1. Hello World!

CHAPTER 2

Riptide config files

If you need to edit the Riptide configuration files, here are the paths on where to find them:

• Linux: ~/.config/riptide

• Windows: C:\Users\USERNAME\AppData\Local\riptide

• Mac: /Users/USERNAME/Library/Application Support/riptide

5

Riptide Documentation

6 Chapter 2. Riptide config files

CHAPTER 3

Documentation

3.1 User Documentation

3.1.1 Introduction

Riptide is a set of tools to manage development environments for web applications. It’s using container virtualization
tools, such as Docker to run all services needed for a project.

It’s goal is to be easy to use by developers. Riptide abstracts the virtualization in such a way that the environment
behaves exactly as if you were running it natively, without the need to install any other requirements the project may
have.

Riptide has to following major features:

• Environments can be defined in re-usable YAML files. The components of these files can be shared across
multiple projects using Git repositories.

• Web services can be started without installing anything besides the engine (eg. Docker) and Riptide.

• Using Bash and Zsh integration CLI commands for projects can be defined an run in a shell just like ordinary
commands.

• Riptide manages file and process permissions and tries to run everything as the same user that runs the Riptide
command.

• Cross platform! Riptide works on Linux, Mac and Windows.

• Riptide is shipped with a simple proxy server that matches all your projects and services using DNS hostnames.
It comes with out of the box SSL support and can also run behind another reverse proxy such as Nginx or
Apache. The Proxy automatically starts and stops projects as you need them.

• You can work on multiple different projects at the same time, all requiring different versions of software and
libraries without having to install anything.

Riptide is split into the following sub-projects:

• Riptide Library (riptide-lib): Main Python library that ties everything together.

7

https://www.docker.com/

Riptide Documentation

• Riptide CLI (riptide-cli): CLI that you will interact with to manage your Riptide projects.

• Riptide Proxy (riptide-proxy): Proxy Server that proxies you the content of your web-services.

• Engines: The engine that actually starts and stops containers for services and commands. The following Engines
are available:

– riptide-engine-docker: Docker Engine

• Database Drivers: Optional components that make managing databases in your development environment easier.
See Managing Databases for features. The following Database Drivers are available:

– riptide-db-mysql: Driver for MySQL based databases

Riptide Projects include the definition of an app. The app defines what services to run and what commands are
available. Services are parts of the application that are constantly running, such as the actual web-service or the
database. Commands are utility CLI commands that are helpful in working with your application such as node or npm
for NodeJS projects.

This guide shows you how to set up Riptide and how to interact with services and commands.

This is the user documentation, it assumes that someone has already set up a project for you. If you want to set-up a
project yourself we recommend that you follow this guide first using the provided “Hello Wold” app. After that, read
through the Configuration Guide.

3.1.2 Installing Riptide

To install Riptide, follow the guide for your operating system.

Note: This documentation was recently changed. If you have any issues, please contact us on Slack.

Linux

This guide will explain how to install Riptide under Linux distributions.

Installing Requirements

This guide assumes you want to run Riptide in the most common set-up using the Docker Engine. To use Riptide you
need to have the following installed:

• Python 3.6+

• pip for Python 3 (might come installed with Python)

– on Ubuntu sudo apt-get install python3-pip

• Docker 16.0+

– Do NOT install Docker via Snap. Follow the instructions on the page linked.

– Make sure to also follow the post-installation steps.

• python-prctl requirements:

– on Ubuntu: sudo apt-get install build-essential libcap-dev

– on Fedora: sudo yum install gcc glibc-devel libcap-devel

8 Chapter 3. Documentation

db.html
../config_docs.html
https://slack.riptide.parakoopa.de
https://docs.docker.com/install/
https://docs.docker.com/install/linux/linux-postinstall/
https://github.com/seveas/python-prctl

Riptide Documentation

Python is available using package managers.

There is a good chance you already have Python installed. Try running python3 --version to check.

Installing Riptide system-wide

To install all Riptide components and the Docker implementation run the following command:

$ sudo pip3 install riptide-all

Make sure this command is run with sudo!

You can test if Riptide is working:

Installing Riptide in a Virtualenv

Riptide can also be installed in a Virtualenv. This is only recommended for advanced Python users. Please make sure,
to use the correct Python interpreter of your Virtualenv when setting up the proxy server.

Updating Riptide

To update Riptide, run

$ [sudo] riptide_upgrade

If you installed Riptide system-wide and not in a Virtualenv, you MUST use sudo. Failing to to so may break your
installation.

Get help and join the community

If you need some support or just want to chat with the community, join our Slack workspace.

Next steps

The next pages of this documentation will explain how to finish the setup of Riptide, how to setup the Proxy server
and how to install the Bash/Zsh integration. It will also teach you how to use the Riptide CLI and Proxy server.

Please make sure to read through all of the following pages of this documentation to properly setup Riptide.

MacOS

This guide will explain how to install Riptide under MacOS.

Note: MacOS is not supported as well as the Linux setup. Most of the downsides of Riptide on MacOS come from
the Docker Desktop implementation for MacOS.

Riptide has some Performance optimizations to increase the performance on Mac, but it will still be slower than
running it on Linux.

If you have experience with Docker or Python on MacOS, we’d love your support in making Riptide on MacOS even
better!

3.1. User Documentation 9

6_project.html
https://slack.riptide.parakoopa.de
performance_optimizations.html

Riptide Documentation

Installing Requirements

This guide assumes you want to run Riptide in the most common set-up using the Docker Engine. To use Riptide you
need to have the following installed:

• Python 3.6+

• pip for Python 3 (might come installed with Python)

• Docker Desktop 16.0+

Python is available for Mac machines using package managers.

Note: If you know what the best way of installing Python 3 is, please let us know by updating this documentation on
Github.

There is a good chance you already have Python installed. Try running python3 --version to check.

Installing Riptide system-wide

Warning: It is currently unknown if sudo must or even can be used when installing Riptide system-wide. It seems
to depend on the way Python is installed and also the MacOS version.

Please try with sudo first and see if this works. Make sure to remember if you installed with or without sudo, as
you will need to update Riptide the same way, see below.

To install all Riptide components and the Docker implementation run the following command:

$ [sudo] pip3 install riptide-all

Sudo may or may not be required, see warning above.

You can test if Riptide is working:

Installing Riptide in a Virtualenv

Riptide can also be installed in a Virtualenv. This is only recommended for advanced Python users. Please make sure,
to use the correct Python interpreter of your Virtualenv when setting up the proxy server.

Updating Riptide

To update Riptide, run

$ [sudo] riptide_upgrade

Make sure to use or not use sudo, depending on if you did during your initial installation. Failing to do so, WILL
break your installation.

10 Chapter 3. Documentation

https://www.docker.com/products/docker-desktop
6_project.html

Riptide Documentation

Configuring shared folders

Docker Desktop for MacOS only allows the virtual machine running the Docker daemon limited access to your ma-
chine.

The default configuration is not enough to use Riptide. Please open the settings of Docker and navigate to the Shared
Folders tab. Make sure the following entries are present:

• /Users

• /Volumes

• /private

• /tmp

• /var/folders

• /usr/local/lib/python3.7 (Or wherever else Python is installed!)

Additional MacOS related notes

Many additional settings or issues not described in this documentation may be directly related to the Docker Desktop
for MacOS implementation.

Please see the documentation for Docker Desktop for Mac for further information.

Known issues under MacOS

• Riptide currently uses the default Docker Desktop Mac daemon. This setup is known to have significantly worse
performance than the Linux version. Riptide has some Performance optimizations to increase performance.

• Due to the performance optimization settings, it might happen that changes to files are not immediately visible on
the host system or the running containers. Some files are not updated on the host system at all (see Performance
optimizations).

Note: If you are a Mac developer and want to improve this situation, please contact us. A possible solution for the
perfomance issues may be something like a docker-sync implementation for Riptide.

Get help and join the community

If you need some support or just want to chat with the community, join our Slack workspace.

Next steps

The next pages of this documentation will explain how to finish the setup of Riptide, how to setup the Proxy server
and how to install the Bash/Zsh integration. It will also teach you how to use the Riptide CLI and Proxy server.

Please make sure to read through all of the following pages of this documentation to properly setup Riptide.

3.1. User Documentation 11

https://docs.docker.com/docker-for-mac/
performance_optimizations.html
performance_optimizations.html
performance_optimizations.html
https://github.com/EugenMayer/docker-sync
https://slack.riptide.parakoopa.de

Riptide Documentation

Windows

This guide will explain how to install Riptide under Windows.

Note: Windows is not supported as well as the Linux setup. Most of the downsides of Riptide on Windows come
from the Docker Desktop implementation for Windows.

Riptide has some Performance optimizations to increase the performance on Windows, but it will still be slower than
running it on Linux.

Also we can not offer any Windows specific support at the moment.

If you have experience with Docker or Python on Windows, we’d love your support in making Riptide on Windows
even better!

Installing Requirements

This guide assumes you want to run Riptide in the most common set-up using the Docker Engine. To use Riptide you
need to have the following installed:

• Python 3.6+ * Download: Python website.

• pip for Python 3 (might come installed with Python)

• Docker Desktop 16.0+

There is a good chance you already have Python installed. Try running python3 --version to check.

Installing Riptide system-wide

To install all Riptide components and the Docker implementation run the following command:

$ pip3 install riptide-all

You can test if Riptide is working:

Installing Riptide in a Virtualenv

Riptide can also be installed in a Virtualenv. This is only recommended for advanced Python users. Please make sure,
to use the correct Python interpreter of your Virtualenv when setting up the proxy server.

Updating Riptide

To update Riptide, run

$ riptide_upgrade

Configuring shared drives

When installing Riptide on a drive other than C:, or when using projects from other drives, you may need to share this
drive with the Docker VM. A notice about this should automatically open in this case.

12 Chapter 3. Documentation

performance_optimizations.html
https://www.python.org/downloads/
https://www.docker.com/products/docker-desktop
6_project.html

Riptide Documentation

Additional Windows related notes

Many additional settings or issues not described in this documentation may be directly related to the Docker Desktop
for Windows implementation.

Please see the documentation for Docker Desktop for Windows for further information.

Known issues under Windows

• Riptide currently uses the default Docker Desktop Windows daemon. This setup is known to have significantly
worse performance than the Linux version. Riptide has some Performance optimizations to increase perfor-
mance.

• Due to the performance optimization settings, it might happen that changes to files are not immediately visible on
the host system or the running containers. Some files are not updated on the host system at all (see Performance
optimizations).

Note: If you are a Windows developer and want to improve this situation, please contact us. A possible solution for
the perfomance issues may be something like a docker-sync implementation for Riptide or using Docker with WSL2
instead of using Docker Desktop. If you do, please share your experience!

Get help and join the community

If you need some support or just want to chat with the community, join our Slack workspace.

Next steps

The next pages of this documentation will explain how to finish the setup of Riptide, how to setup the Proxy server
and how to install the Bash/Zsh integration. It will also teach you how to use the Riptide CLI and Proxy server.

Please make sure to read through all of the following pages of this documentation to properly setup Riptide.

Installing individual components

Instead of installing all Riptide components via the riptide-all package, you can also install individual parts of
Riptide separately.

Core components:

$ [sudo] pip3 install riptide-proxy riptide-cli riptide-engine-docker

Database drivers, additional support for database management:

$ [sudo] pip3 install riptide-db-mysql # MySQL

Plugins, used to integrate Riptide better with special needs of some programming languages or frameworks:

$ [sudo] pip3 install riptide-plugin-php-xdebug # Required for the PHP debugger Xdebug

3.1. User Documentation 13

https://docs.docker.com/docker-for-windows/
performance_optimizations.html
performance_optimizations.html
performance_optimizations.html
https://github.com/EugenMayer/docker-sync
https://slack.riptide.parakoopa.de

Riptide Documentation

3.1.3 Configuration

This page will show you how to edit the system configuration file of Riptide (also refered to as “user configuration
file”).

Initial configuration

Create your system configuration file using riptide config-edit-user. This will open an editor.

Leave everything on default for now, individual settings will be explained below.

After creating the configuration file using this command, Riptide CLI is now ready to use! Continue to the next
chapters to learn how to use it with a project and how to setup the Proxy Server.

Proxy server configuration

The configuration for the Proxy Server is described in the chapter Proxy Server Setup.

Repository configuration

The repos key contains a list of repositories, that are used by Riptide to look up components of projects.

By default the community repository is the only repository in this list. Please see Using Repositories for more info.

Engine configuration

The entry under engine defines which container engine implementation is used. Currently only docker is sup-
ported.

Editing the configuration file manually

You can use the command riptide config-edit-user to edit the configuration file.

Alternatively you can also directly edit the file “<CONFIG>/config.yml” in your favorite editor.

Advanced: Resolving hostnames & /etc/hosts file

Riptide uses a proxy server to route traffic to your projects. This proxy server uses hostnames to route traffic. These
hostnames need to be routable to your local machine.

In order to make this easy for you, Riptide (by default) automatically updates the /etc/hosts file (may have a different
path under different OSes). However in order to do so, your local user needs write access to this file. To change
permissions under Linux, you can use the following command:

sudo setfacl -m u:<YOUR USERNAME>:rw /etc/hosts

Replace <YOUR USERNAME> with your username.

If you don’t want to change permissions to the file, you can instead add these entries manually. If Riptide can’t update
the file, it will prompt you with a message, whenever it needs updating:

14 Chapter 3. Documentation

5_proxy.html
repos.html
../index.html#Riptide-config-files
https://en.wikipedia.org/wiki/Hosts_(file)#Location_in_the_file_system
https://en.wikipedia.org/wiki/Hosts_(file)#Location_in_the_file_system

Riptide Documentation

Manual routing

Alternatively you can disable the automatic update of the hosts file by setting update_hosts_file to false in
the configuration file.

In this case, you need to make sure, all project URLs are routed correctly via DNS.

Assuming you set the proxy server to run under riptide.local the following hostnames must be routable to your
local machine using DNS:

• riptide.local

• *.riptide.local

3.1.4 Shell Integration

Riptide has integrations for the popular Bash and Zsh shells. We highly recommend installing these!

CLI Command Aliases

Riptide projects may define custom commands for you to use. Take for example a command called mysql. To run it
without the integration you have to execute:

$ riptide cmd mysql -e "DESCRIBE Hello;"

If the shell integration is enabled, you can just run the command like you would any other shell command:

$ mysql -e "DESCRIBE Hello;"

Warning: We highly recommend using the shell integration. The riptide cmd command does not support
passing all arguments and options.

Install the integration

If you are using Bash, add the following line to your .bashrc:

. riptide.hook.bash

If you are using Zsh, add the following line to your .zshrc:

. riptide.hook.zsh

You need to re-open your terminals for the integration to be enabled (or source your bashrc/zshrc).

3.1. User Documentation 15

Riptide Documentation

Warning: When using Riptide inside a virtualenv, you need to replace riptide.hook.bashwith the full path
to riptide.hook.bash. You can get that by calling which riptide.hook.bash. The same applies for
the zsh integration.

Note: If you want to try these commands out yourself using the demo project from the following chapters, you may
need to start the database first: riptide start -s db.

Warning: Whenever you set up a project for the first time, you need to exit and re-enter the project directory to
use the commands.

Autocomplete

Riptide has limited experimental autocomplete support.

To enable it for Bash, add the following line to your .bashrc:

eval "$(_RIPTIDE_COMPLETE=source_bash riptide)"

To enable it for Zsh, add the following line to your .zshrc:

eval "$(_RIPTIDE_COMPLETE=source_zsh riptide)"

Replace <full_path_to_riptide> with the full path to the riptide command. On Mac and Linux you can
get this path by executing which riptide.

You need to re-open your terminals or source the rc-file inside them for the integration to be enabled.

Warning: When using Riptide inside a virtualenv, you need to replace riptide with the full path to riptide.
You can get that by calling which riptide.

3.1.5 Proxy Server Setup

The Riptide proxy server routes the traffic for your projects and services, you use it to access HTTP-based services of
the project you are working on.

Proxy Server URL

The Proxy server URL can be configured by calling riptide config-edit-user and changing the value of
riptide.proxy.url.

Enter the hostname you want your proxy server to be accessible at there.

By default Riptide will add entries to your system’s hosts-file to make sure your projects can be routed at this address.
See “Advanced: Resolving hostnames & /etc/hosts file” for more information..

If you change this address, and have hosts-file management enabled, you may need to run any command of the Riptide
CLI to update the hosts-file with the new domains.

16 Chapter 3. Documentation

3_configuration.html#advanced-resolving-hostnames-etc-hosts-file

Riptide Documentation

Proxy Server HTTP/HTTPS Ports

The proxy server can route HTTP and HTTPS traffic. You can change the ports by editing the system configuration
(riptide config-edit-user) and changing the values of riptide.proxy.ports.

If you plan to use the proxy server standalone as your primary HTTP and HTTPS server on your machine, leave the
defaults (80 and 443).

If you already have a web server on ports 80 and 443 and/or plan to use the Riptide proxy behind a reverse proxy (eg.
Nginx or Apache), change the ports to something else, preferably a four-digit port combination (eg. 8080 and 8443).

You can also disable HTTPS by setting the value for https to false. Do this if you want to run the proxy server
behind a reverse proxy with SSL termination.

Starting the Proxy Server

How to start the proxy server depends on your system.

Linux, ports <= 1024

If you are on Linux and the port number of either HTTP or HTTPS is below 1024, you need to start the Proxy Server
as root. These elevated privileges are required for applications to be able to bind ports below 1024. After binding the
port the proxy will automatically drop all it’s privileges to the user executing sudo.

To start the server in this scenario:

$ sudo riptide_proxy
Was running as root. Changing user to marco.
Starting Riptide Proxy on HTTPS port 443
Starting Riptide Proxy on HTTP port 80

After starting the proxy server head over to the URL you configured for the proxy server and you should see a landing
page for the proxy server.

Mac , ports <= 1024

Running the proxy server with ports lower than 1024 may or may not be possible on your system based on how your
machine is set up.

You may be able to follow the “all other platforms” section of this guide. However if this does not work for you please
use higher ports and configure firewall rules.

All other platforms

On all other platforms and on Linux when using ports above 1024, you can start the proxy server as your current user
without sudo or an Administrator Command Line:

$ riptide_proxy
Starting Riptide Proxy on HTTPS port 443
Starting Riptide Proxy on HTTP port 80

After starting the proxy server head over to the URL you configured for the proxy server and you should see a landing
page for the proxy server.

3.1. User Documentation 17

Riptide Documentation

Start the Proxy on system boot

You may want to start the proxy server automatically whenever you log in, this section describes how to do so for
different platforms.

Linux, ports <= 1024 (Systemd)

When using the proxy server with ports below 1024, the server needs to be run as root. This means for autostart it has
to be configured as a system level service.

Create the following unit file under /etc/systemd/system/riptide.service:

[Unit]
Description=Riptide

[Service]
ExecStart=<PROXY> --user=<USERNAME>
Restart=on-failure

[Install]
WantedBy=multi-user.target

You need to replace <USERNAME> with your username and <PROXY> with the full path to the proxy executable
which you can get by calling which riptide_proxy.

After that you need to reload the Systemd daemon:

sudo systemctl daemon-reload

To enable autostart:

sudo systemctl enable riptide

To start the proxy server right away:

sudo systemctl start riptide

Linux, ports > 1024 (Systemd)

When using ports above 1024 it is best to configure the proxy server as a user level unit. This means that the proxy
server is directly bound to your user account and will autostart on login.

Create the following unit file under ~/.config/systemd/user/riptide.service:

[Unit]
Description=Riptide

[Service]
ExecStart=<PROXY>
Restart=on-failure

[Install]
WantedBy=default.target

You need to replace <PROXY> with the full path to the proxy executable which you can get by calling which
riptide_proxy.

18 Chapter 3. Documentation

Riptide Documentation

After that you need to reload the Systemd daemon:

sudo systemctl daemon-reload

To enable autostart:

systemctl --user enable riptide

To start the proxy server right away:

systemctl --user start riptide

Other platforms

There is no info on how to do this on other platforms here yet. Please start the proxy server manually as described
above.

Running the Proxy Server behind Nginx or Apache

You may want to run Riptide behind an Nginx or Apache proxy. This is especially useful if you work on projects that
don’t use Riptide.

This guide will show you how to do that, assuming you set the HTTP port of Riptide proxy to 8888 and disabled
HTTPS. This guide assumes Nginx or Apache will terminate SSL for you.

Nginx

server {
listen 80;
listen [::]:80;

Configure SSL if desired
#listen *:443 ssl http2;
#listen [::]:443 ssl http2;
#ssl_certificate ...
#ssl_certificate_key ...

server_name <INSERT PROXY HOSTNAME HERE>;
server_name *.<INSERT PROXY HOSTNAME HERE>;

client_max_body_size 2G;

location / {
proxy_pass http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>;
proxy_read_timeout 90000;
proxy_send_timeout 90000;
proxy_connect_timeout 90000;
send_timeout 90000;

proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-Proto $scheme;

(continues on next page)

3.1. User Documentation 19

Riptide Documentation

(continued from previous page)

}

WebSocket Reverse Proxy
location /___riptide_proxy_ws {
proxy_pass http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>;
proxy_http_version 1.1;
proxy_set_header Host $host;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "Upgrade";

}

}

Apache

The modules proxy, proxy_http and proxy_wstunnel must be enabled.

<VirtualHost *:80>
ServerName <INSERT PROXY HOSTNAME HERE>
ServerAlias *.<INSERT PROXY HOSTNAME HERE>

RewriteCond %{HTTP:Upgrade} =websocket [NC]
RewriteRule ^/___riptide_proxy_ws ws://127.0.0.1:<INSERT PROXY HTTP PORT HERE>/

→˓___riptide_proxy_ws [P,L]

ProxyPreserveHost On
ProxyTimeout 90000
ProxyPass / http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>/
ProxyPassReverse / http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>/

</VirtualHost>

<IfModule mod_ssl.c>
<VirtualHost *:443>

ServerName <INSERT PROXY HOSTNAME HERE>
ServerAlias *.<INSERT PROXY HOSTNAME HERE>

RewriteCond %{HTTP:Upgrade} =websocket [NC]
RewriteRule ^/___riptide_proxy_ws wss://127.0.0.1:<INSERT PROXY HTTP PORT HERE>

→˓/___riptide_proxy_ws [P,L]

ProxyPreserveHost On
ProxyTimeout 90000
ProxyPass / http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>/
ProxyPassReverse / http://127.0.0.1:<INSERT PROXY HTTP PORT HERE>/

</VirtualHost>
</IfModule>

Import the SSL certificate authority

If you enable the HTTPS feature of the proxy server, you probably want to import the certificate authority (CA) into
your browser, so that you don’t get an SSL warning every time you restart the proxy server or enter a different project.

20 Chapter 3. Documentation

Riptide Documentation

Location

The CA file is located under “<CONFIG>/riptide_proxy/ca.pem”.

The file is created on the first startup of the proxy server. You can also place your own CA file here.

Chrome

1. Navigate to chrome://settings/certificates?search=SSL

2. Go to the tab for certificate authorities

3. Click Import and import the CA file, mark it as trusted to identify websites.

Firefox

1. Navigate to about:preferences#privacy

2. Search for “Certificates” and press the “View Certificates. . . ” button.

3. On the “Authorities” tab “Import. . . ” the CA certificate. Trust the certificate to identify websites.

Auto-Start services

The proxy server can automatically start projects if you access the URL for a service. To disable this set riptide.
proxy.autostart to false in the system configuration. true enables it.

3.1.6 Project Setup

The first time you want to use a project, it has to be set up.

For this part of the guide, we will be using a demo project to guide you through the setup process.

This demo project contains everything you may encounter while setting up real projects, so we recommend you place
this demo project into an empty directory and follow this guide first before setting up a real project.

Demo project (place in riptide.yml in empty directory):

project:
name: dummy
src: .
app:
name: dummy
import:

dummy_directory:
target: dummy-files
name: Anything-this-is-just-a-demo

notices:
usage: This usage text shows you additional things you need to do when running

→˓this project.
services:

hello_world:
image: strm/helloworld-http
port: 80
run_as_current_user: false

(continues on next page)

3.1. User Documentation 21

../index.html#Riptide-config-files

Riptide Documentation

(continued from previous page)

roles:
- main

db:
image: mysql:8.0
roles:
- db

driver:
name: mysql
config:

database: dummy
password: mysql

run_as_current_user: false
commands:

mysql:
image: "{{ parent().get_service_by_role('db').image }}"
command: "mysql -hdb -uroot -pmysql dummy"

Running the first-time setup

First, make sure all repositories and Docker images are up to date:

$ riptide update
Updating Riptide repositories...

...

Updating images...
[service/hello_world] Pulling 'strm/helloworld-http':

Done!
[command/db] Pulling 'mysql:8.0':

Done!
[command/mysql] Pulling 'mysql:8.0':

Done!
Done!

You should run this command regularly to make sure your images and repositories are always up to date. See the
Docker documentation for more details on images. See Using Repositories for more information on repositories.

To run the first-time setup run:

$ riptide setup
Thank you for using Riptide!
This command will guide you through the initial setup for dummy.
Please follow it very carefully, it won't take long!
> Press any key to continue...

This will update all repositories and images and start the setup. After starting the setup, press any key:

> BEGIN SETUP

Usage notes for running dummy with Riptide:
This usage text shows you additional things you need to do when running this

→˓project.

> Do you wish to run this interactive setup? [Y/n]

22 Chapter 3. Documentation

https://docs.docker.com/get-started/#images-and-containers
repos.html

Riptide Documentation

Riptide will then show you the usage notes that are defined for the app your project is using. This usage note may
contain additional steps you need to run after the setup. If you need to view this again, run riptide notes after
the setup.

Confirm that you want to run the interactive setup by pressing y.

Tip: If you accidentally press n or make a mistake later during the setup, you can always restart it by passing the
--force option.

After pressing y you will be asked what kind of setup you want to do:

> INTERACTIVE SETUP
> Are you working on a new project that needs to be installed or do you want to
→˓Import existing data? [n/I]

If you press n Riptide will exit and show you instructions for the first-time installation of the application you are using.
Follow these instructions.

If you press i you will be guided through the import of existing data. What can be imported depends on the project.
For this dummy project, a MySQL database can be imported, Riptide will tell you this after you pressed i:

> EXISTING PROJECT
> DATABASE IMPORT

> Do you want to import a database (format mysql)? [Y/n]

For this demo, open a text editor and put the following contents in a file called demo.sql:

CREATE TABLE Hello (
World varchar(255)

);

Enter y to confirm that you want to import an SQL file:

Enter the path to the SQL file.

Enter the path to the SQL file that you just downloaded:

Enter the path to the SQL file. demo.sql

Starting services...

mysql: 2/6| | Pulling image... Downloading :...

You can see that the database is now starting, your SQL file will be imported shortly:

Starting services...

mysql: 6/6|| Started!

Waiting for database...
Importing into database environment default... this may take a while...

Database environment default imported.

3.1. User Documentation 23

Riptide Documentation

After the database is imported, the project may ask you to import other directories, such as directories containing
media files or configuration specific to the application:

> FILE IMPORT

> dummy_directory IMPORT
> Do you wish to import Anything-this-is-just-a-demo to <project>/dummy-files? [Y/

→˓n]

In our example it doesn’t really matter. You may try this out by confirming with y and entering a path to a directory.
It will be copied into the dummy-files directory inside the current directory:

> Do you wish to import Anything-this-is-just-a-demo to <project>/dummy-files? [Y/n] y
Enter path of files or directory to copy: /tmp/test_dir

Importing dummy_directory (dummy-files) from /tmp/test_dir
Copying... this can take some time...
Done!

After the import, or after you skipped it, Riptide will inform you that it is done:

> IMPORT DONE!
All files were imported.

DONE!

...

Next steps

The project is now set-up. If you are setting up a real project, there may need to be some additional steps you have to
do now, that you were told in the usage notes. If you need to view these notes again run riptide notes. This will
show you both the general usage notes, that may contain things you need to do after importing an existing project, and
installation notes, for starting from scratch.

If you want to import databases or files later on, see Managing Databases and Importing Files.

3.1.7 Working with Riptide

Now you have everything set up! It is time to access your project through Riptide.

This part of the guide will show you how to do daily tasks with Riptide.

Access your projects web services

First make sure that the proxy server is started. After that head to the URL you configured for the proxy. You should
be greeted with a landing page:

24 Chapter 3. Documentation

db.html
import.html

Riptide Documentation

As you can see, projects with all services that have HTTP capabilities are listed here. You can click on a link to access
the service.

All service URLs have the following structure:

<project>(--<service>).<proxy-url>

If your service is configured to be the main service of the URL, it’s url is simply the URL of the project (eg. dummy.
riptide.local). If your project has multiple services, than the other services are accessible by adding two dashes
to the name of the project (eg. dummy--service2.riptide.local).

Accessing the dummy project’s hello_wold service as shown in the screenshot above, will present you with the au-
tostart page of this web service:

3.1. User Documentation 25

Riptide Documentation

After your project has started up, you will see the contents served by your web service:

Access other TCP/UDP ports

A project may provide other, non HTTP services. Riptide allows services to define additional ports which will be
bound to your local machine on a port that will always stay the same.

For example, if you have two projects, both with a MySQL server that would normally run on port 3306, then the first
project may reserve the port 3306 and the second one 3307. The ports will always stay the same for these projects so
you can configure your SQL software accordingly.

26 Chapter 3. Documentation

Riptide Documentation

To view the additional ports for a project, run riptide status after the services have been started:

Running CLI commands

Note: This section assumes you have the Shell Integration set up. If not, prefix all commands with riptide cmd.

A project may define helpful shell commands for you to use.

To list them run riptide cmd:

$ riptide cmd
Commands:

- mysql

To run a command, simply execute it on the shell (you need to be inside the project directory):

$ mysql --help
mysql: [Warning] Using a password on the command line interface can be insecure.
mysql Ver 8.0.15 for Linux on x86_64 (MySQL Community Server - GPL)
...

Warning: When using the shell integration and you have just set up a project, you need to leave and re-enter the
project to use commands.

Warning: Piping (|, <, >) is not supported for Riptide commands. If you need to pipe input, you may be able to
run the command directly in the shell of a service.

Warning: The --help flag does not work as expected when running commands with riptide cmd, it will
always show the help for riptide cmd instead. Please set up the shell integration if you need the --help flag.

Starting and stopping services via CLI

You can start and stop services on the CLI by using the start, restart and stop commands. You can pass the
-s flag to only affect certain services (comma separated):

3.1. User Documentation 27

4_shell.html

Riptide Documentation

$ riptide stop -s hello_world,db
Stopping services...

hello_world: 2/3| | Stopping...
db : 3/3|| Stopped!

To view the names and status of all services run riptide status.

Running services in foreground

Sometimes you might need to run a command in foreground mode (attached to your console; interactively) like you
would run other commands. This may be needed if you want to debug the service. For example when using NodeJS
you can configure this with the debugger of your IDE to start and stop your application service via the IDE and have
it attach it’s debugger.

To run a service in foreground use start-fg. In this example a service named varnish is run in foreground:

$ riptide start-fg -s www varnish
(1/3) Starting other services...
Starting services...

www: 2/2|| Already started!

(2/3) Stopping varnish...
Stopping services...

varnish: 3/3|| Stopped!

(3/3) Starting in varnish foreground mode...
bind(): Cannot assign requested address
child (37) Started
Child (37) said Child starts

Please note that some service options are ignored when running a service interactively:

• The logging options for stdout and stderr are ignored. Instead stdout and stderr are directly sent to the terminal.

• pre_start and post_start commands are not run.

• The src role is added to the service. This means that the source code of your application will always be
available for the service.

• working_directory is ignored. The working directory is set to the directory you are currently in. If you
are not currently inside the project, the working directory is set to the root of the project.

A note about paths and directories

Please note that all containers used to run your application use a separate file system from your own.

The path configured in the src setting inside the riptide.yml is available for all services with the src role and
all commands under /src.

If you see paths in logs and other places /src always represents the project src setting.

You CAN NOT access files on your machine that are outside of the src directory. Under normal circumstances, this
will be no problem. When you start commands and are inside the project src-folder you can access files like normal,
because Riptide will automatically run the command in the correct directory inside the container.

28 Chapter 3. Documentation

Riptide Documentation

However you can not use any paths that are outside the project’s ‘‘src‘‘ directory.

Let’s take the following example: We have a directory tree like so:

/home/me/my_projects
-> project

-> riptide.yml
-> a_file

-> other_directory
-> b_file

The src setting is set to ., meaning that all commands and services have the entire /home/me/my_projects
directory mounted to /src.

Because of this, the following will work as expected. my_command will be able to access a_file:

$ pwd
/home/me/my_projects/project
$ riptide cmd my_command a_file
$ riptide cmd my_command ./a_file
$ riptide cmd my_command /src/a_file

However the following will NOT work. my_command will find neither a_file nor b_file:

$ pwd
/home/me/my_projects/project
$ riptide cmd my_command /home/me/my_projects/project/a_file
$ riptide cmd my_command ../other_directory/b_file
$ riptide cmd my_command /home/me/my_projects/other_directory/b_file

Directly access the shell of a service

This should usually not be required, but you can directly access the shell of the containers the services run in by
running riptide exec service_name.

If you need root access inside of the container, pass the flag --root.

3.1.8 Managing Databases

If your project uses a supported database you may be able to use the database features of Riptide. These features allow
you to manage different environments of your database and to switch between them, for example if you are developing
a new feature.

Note: Database environments are an abstraction over whatever database management your database software comes
with. It completely isolates the entire physical database files in different directories.

If you switch the environment you tell Riptide to use a different directory for the data of your database.

Listing environments and status

riptide db-status shows you the current database environment and riptide db-list lists them.

3.1. User Documentation 29

Riptide Documentation

Note: If these commands fail with the message “No such command”, then database management is not available for
your project.

Creating a new environment

Use riptide db-new NAME to create a new EMPTY database environment. This also switches the current envi-
ronment to this new one. See Copying.html instead if you want to copy an existing environment.

Importing and exporting

You can import and export dumps of the currently active database environment. The format of this dump depends on
the database driver that the project is using.

riptide db-import FILE to import, riptide db-export FILE to export.

Note: Depending on the database driver this may export/import the entire database server with all “sub-databases”
or only one active “sub-database”. For the MySQL driver for example it only exports and imports one configured
primary database.

Copying

To copy an existing environment, use riptide db-copy FROM TO, where FROM is the name of the environment
to copy from and TO the name of the new environment.

Switches to the new environment.

Deleting

To delete an environment use riptide db-drop NAME. You can not delete the active environment.

Warning: This can not be undone.

3.1.9 Importing Files

Riptide supports the definition of directories that are used to import files into during the project setup.

You can also import files after the setup is completed by running riptide import-files KEY
PATH_TO_IMPORT.

KEY is the import key. You can find his by executing riptide config-dump to output the entire project config-
uration. The import keys are defined under riptide.project.app.import.

PATH_TO_IMPORT is the path of the directory to import.

30 Chapter 3. Documentation

6_project.html

Riptide Documentation

3.1.10 Log Files

A service in a project may define log files. These log files may be from the standard output, the standard error, a file
inside of the service container or the output of a utility command inside the service container.

To view the log files, open the directory <project>/_riptide/logs/. You will find a directory in there for
each service that defines logs. Inside the directories are the log files.

Log files don’t get cleared after a service reboots. If you want to clear them manually, stop the service and remove the
files.

3.1.11 Using Repositories

Parts of project configuration may be stored in external repositories. Repositories make it easy to share Services,
Commands or other parts of the configuration across multiple projects.

You can check if your project uses repositories by opening the project’s riptide.yml. If it contains $ref-keys then
parts of the configuration are merged with documents from the repositories. If, for example, the app entry contains a
$ref entry with the value app/demo, then Riptide searches for the App by searching for app/demo.yml inside
all your configured repositories. The app/demo.yml is loaded as your App and then the contents under app in the
project’s riptide.yml are merged together.

More information about repositories, can be found in the configuration guide.

You can change repositories by running riptide config-user-edit. Repositories are defined as a list under
the repo key. Riptide repositories are Git repositories. Enter the clone-URLs for your repositories there.

You can update (pull) the current contents of all repositories by running riptide update. This command also
updates all project images.

The repositories are stored in the “<CONFIG>/repos” folder. Since they are ordinary Git repositories you can pull and
push repositories that are stored there.

3.1.12 PHP Debugging with XDebug

By default XDebug is disabled when using PHP projects, for performance reasons.

If you want to enable XDebug, make sure you have the riptide-plugin-php-xdebug package installed. This
is installed by default since Riptide 0.5.0.

See Status of XDebug

To see if XDebug is currently enabled for a project, use the following command:

$ riptide xdebug
Xdebug status for riptidedocs: Disabled.
Detected Xdebug version: 3
Mode: debug
Extra configuration:
Request trigger: no (xdebug.start_with_request=yes)

Enable / Disable XDebug

Use the following commands to toggle XDebug for all running services and all Riptide commands for a single project:

3.1. User Documentation 31

../config_docs/mechanics/how_repositories.html
../index.html#Riptide-config-files

Riptide Documentation

$ riptide xdebug off
$ riptide xdebug on

Xdebug Mode

By default Xdebug is configured to run in “develop” mode. Using the -m/--mode option you can change the mode
Xdebug should use. You can comma-seperate multiple modes.

This setting only applies to Xdebug 3.

Activation method

By default xdebug.start_with_request is set to yes, so the only triggers configuring whether or not debug-
ging should happen are this command and your IDE listening for connections or not.

If you want, you can use --request/-r to set this value to trigger. The debugger will then only connect if it
detects the cookie for it (see Xdebug documentation). To disable this again use --no-request/-R.

This setting only applies to Xdebug 3.

Additional configuration

You can pass additional configuration as comma-seperated key-value pairs using the option --config/-c. This is
the same format as used by the XDEBUG_CONFIG environment variable.

For example, to set the xdebug.log and xdebug.log_level settings:

riptide xdebug -c ‘log=/tmp/xdebug.log,log_level=10’ on

Xdebug Version

The plugin tries to automatically detect the Xdebug version. For this it tries the following:

• First it checks if the environment variable (that Riptide is running with!) RIPTIDE_XDEBUG_VERSION is set
to either 2 or 3.

• (RECOMMENDED) Otherwise it checks if the label php_xdebug_version of the image assigned to the
first service in the app with the role php‘ is set to either 2 or 3.

• Otherwise, it checks if in the currently loaded configuration the environment variable
RIPTIDE_XDEBUG_VERSION is set to either 2 or 3 at ANY service or comamnd in the app (abso-
lutely not recommended).

Based on the determined value, it will set the correct Xdebug configuration. If no version could be detected, Riptide
will assume version 2 and output a warning.

Enable XDebug in PHPStorm

When XDebug is enabled, it will automatically try to connect.

Enable Remote Debugging in PHPStorm to accept debugging connections:

32 Chapter 3. Documentation

Riptide Documentation

When a service container tries to connect for the first time, you have to configure path mappings. You will see the
following warning in the debugging window of PhpStorm:

Click on “Configure Server”. Create a new server entry and as a “Name” enter the name that was shown in the previous
warning (in this case riptide-demo-xdebug). As “Host” enter the URL of the project/service.

Check “Use path mappings”. Select the sub-directory your src entry of your riptide.yml points to. In this
example src is ., so we will select the top project directory. Enter /src as “Absolute Path on the server” and save.

The debugger should now work for this project.

3.1. User Documentation 33

Riptide Documentation

3.1.13 Performance Optimizations

Riptide has some settings for performance optimizations that may be enabled on any platform, but only bring benefits
on some.

Riptide also has some fixed built-in performance optimizations for specific platforms.

Configurable Performance Optimizations

These performance optimizations can be toggled in the Riptide system configuration (riptide
config-edit-user).

They are found under the performance key. The default value for all settings is auto, which means that Riptide
will automatically decide, of the performance option should be enabled or not.

Named Volumes instead of Host-Path volumes (dont_sync_named_volumes_with_host)

If enabled, volumes, that have a volume_name set, are not mounted to the host system and are instead created as
volumes with the volume_name. Otherwise they are created as host path volumes only. Enabling this increases
performance on some platforms.

Please note, that Riptide does not delete named volume data for old projects. Please consult the documentation of the
engine, on how to do that.

“auto” enables this feature on Mac and Windows, when using the Docker container backend.

Switching this setting on or off breaks existing volumes. They need to be migrated manually. See Update notes for
version 0.5.0

Do not synchronize unimportant paths with the host system (dont_sync_unimportant_src)

Normally all Commands and Services get access to the entire source directory of a project as volume. If this setting
is enabled, unimportant_paths that are defined in the App are not updated on the host system when changed by
the volume. This means changes to these files are not available, but file access speeds may be drastically increased on
some platforms.

Currently all files written inside the container are lost on container restart. The files are currently written to RAM.

“auto” enables this feature on Mac and Windows, when using the Docker container backend.

This feature can be safely switched on or off. Projects need to be restarted for this to take effect.

Platform-specific optimizations

MacOS

Under MacOS when using Docker, the performance setting delegated is set for volumes. This means that some-
times changes to files within the container are not immediately visible on the host system.

See the Docker documentation for more details.

34 Chapter 3. Documentation

../config_docs/entities/config.html
../update_docs/0.5.0.html
../update_docs/0.5.0.html
../config_docs/entities/app.html
https://docs.docker.com/docker-for-mac/osxfs-caching/

Riptide Documentation

3.2 Configuration Guide

Welcome to the Riptide Configuration Guide.

This guide will guide you through writing your own Riptide projects. It explains the mechanics of the YAML-based
configuration language and the different entities that control how Riptide projects behave.

The Chapter How Riptide works explains the mechanics of the Riptide configuration and what repositories are.

The Chapter Entities contains the specification of all entities.

Examples shows you how to get quickly started by creating projects based on templates from the Riptide Community
Repository.

3.2.1 How Riptide works

Overview / Hierarchy

Riptide’s configuration is made up of a hierarchy of entities (also called objects or documents).

The currently loaded configuration is based on the system configuration under “<CONFIG>/config.yml” and the cur-
rently loaded project, which is read from a riptide.yml. Additionally, if a riptide.local.yml exists, it’s
contents are merged on top of the riptide.yml.

Projects contain an App, which contains Services and Commands. And so the configuration forms a hierarchy of
different entities:

3.2. Configuration Guide 35

config_docs/entities.html
config_docs/entities.html
config_docs/using_repo.html
config_docs/using_repo/community_repo.html
config_docs/using_repo/community_repo.html
config.html
../index.html#Riptide-config-files
projects.html
apps.html
services.html
commands.html

Riptide Documentation

The entire (fully processed) configuration can be viewed by using the CLI command riptide config-dump.
Projects are internally inserted under the system configuration:

$ riptide config-dump
Riptide configuration

This is the final configuration that was created by merging all configuration files
→˓together
and resolving all variables.
Includes some internal system keywords (keys with $, except $ref).
riptide:

engine: docker
proxy:
autoexit: 15
autostart: true
ports:

http: 80
https: 443

url: riptide.local
repos:
- git@github.com:Parakoopa/riptide-repo-private.git
update_hosts_file: true
project:
$path: /home/example/riptide/demo-project/riptide.yml
app:

commands:
echo_me:
$name: echo_me
command: echo
image: alpine

name: dummy
services:
hello_world:
$name: hello_world
image: strm/helloworld-http
port: 80
run_as_current_user: false
roles:

- main
name: dummy
src: ./src

The files that make up each configuration entity are simple YAML files with a header depending on their type.

Example project entity that contains one app entity under app. This app contains service entities under “services”.

project:
name: foo
src: .
app:
name: bar
services:

hello_world:
image: strm/helloworld-http
port: 80
run_as_current_user: false
roles:
- main

36 Chapter 3. Documentation

Riptide Documentation

Creating Projects

To create projects, create a new file called “riptide.yml” in the root of your project.

This file is a YAML file with the header “project”. The rest of the file is filled with keys and values, based on the
project’s schema. See Projects for more details.

Schemas

Each entity has a schema that defines it. The configuration files you create must fit to this schema. The schema for all
entities is explained in the following sections.

Variables

Strings in entity documents may contain variables. These variables are references to fields in the same document.

Example:

project:
name: foo
src: .
notes:
usage: "Image - {{ app.services.hello_world.image }}"

app:
name: bar
services:

hello_world:
image: strm/helloworld-http

Result:

project:
name: foo
src: .
notes:
usage: "Image - strm/helloworld-http"

app:
name: bar
services:

hello_world:
image: strm/helloworld-http

Helper Functions

In addition to variables, helper functions (also called “Variable Helpers”) can be used to perform advanced tasks. All
entities have one helper called parent() that returns the parent entity.

Example:

app:
name: bar
services:
hello_world:

image: '{{ parent().name }}'

3.2. Configuration Guide 37

projects.html

Riptide Documentation

Result:

app:
name: bar
services:
hello_world:

image: bar

In this example parent() is called on the service called hello_world. The parent of this service is the app, and
so parent().name returns the name of the app.

Repositories

Entities can contain references to other documents.

Example:

app:
name: bar
services:
hello_world:

$ref: /service/hello-world
command: 'this will override the comnmand in /service/hello-world'

Riptide will load the entity contained in the file service/hello-world.yml inside one of the repositories, that
is specified in the system configuration and merge it with the one defined here.

More information on repositories can be found under “How Repositories work”.

Details about how documents are processed

All of the properties described here are based on the Python library Configcrunch.

If you want additional information about the behaviour of Configcrunch, please have a look at the Configcrunch
documentation.

How Repositories work

As explained in the User Documentation repositories contain apps, services and commands that can be used inside
projects.

To use an entity from a repository, simply reference it in your project file via $ref:

project:
name: demo
src: .
app:
$ref: /app/demo
services:

hello_world:
command: 'this will override the comnmand for hello_world in app/demo.yml'

Riptide will look trough all cloned repositories that are defined in the system configuration under repos. It will start
with the first repository and search for a file named app/demo.yml.

38 Chapter 3. Documentation

config.html
../using_repo/how_repositories.html
https://configcrunch.readthedocs.io/
https://configcrunch.readthedocs.io/
../../user_docs/repos.html

Riptide Documentation

If it finds this file it will merge the contents of your project file on top of app/demo.yml. It will then do the same
for all other repositories defined under repos, so you can configure multiple repositories that override each other and
build a hierarchy of repositories using this technique.

You can view the merged result by calling riptide config-dump.

Entities defined in the repository can also reference other entities, even using relative paths.

Repositories are cloned and updated whenever riptide update is run.

Complex example

This is a complex example using two repositories and multiple references. By looking at this example it should become
clear, how repositories work.

This is the base project file for our example:

project:
name: demo
src: .
app:
$ref: /app/demo
services:

hello_world:
command: 'this will override the comnmand for hello_world in app/demo.yml'

additional_service:
$ref: /service/demo
image: 'this will override the image in service/demo.yml'

And this is the content of our system configuration’s repos setting:

repos:
- https://repos.example/repo1.git
- https://repos.example/repo2.git

repo1.git contains the following files:

<repo1.git>/app/demo
app:

services:
hello_world:

image: alpine
command: 'echo hello world'

<repo1.git>/service/demo
service:
image: ubuntu
command: demo

repo2.git contains the following files:

<repo2.git>/app/demo
app:

services:
hello_world:

image: debian

The end result is the following project file:

3.2. Configuration Guide 39

Riptide Documentation

project:
name: demo
src: .
app:
services:

hello_world:
image: debian
command: 'this will override the comnmand for hello_world in app/demo.yml'

additional_service:
image: 'this will override the image in service/demo.yml'
command: demo

Removing values

During the merging process it is possible to remove values entirely using the special keyword $renove.

Example (remove a service from a loaded app):

project:
name: demo
src: .
app:
$ref: /app/demo
services:

hello_world: $remove

Details about how documents are processed

More information about the properties of Riptide’s configuration language, can be found in the section Overview /
Hierarchy.

The configuration language is based on the Python library Configcrunch.

If you want additional information about the behaviour of Configcrunch, please have a look at the Configcrunch
documentation.

Riptide Community Repository

The Riptide Community Repository is the default repository for Riptide.

It contains many helpful apps, services and commands maintained by the community. This part of the guide will use
entities from this repository to build projects.

A list of all entities can be found here.

Is something missing from the repository? Feel free to fork the repository and add the things you need. Or set up
your own and use both. If you built something, please contribute to the community repository to make it even better!

3.2.2 Entities

System (User) Configuration

The system configuration is the main configuration file that defines global behaviour for Riptide, such as the proxy
server configuration.

40 Chapter 3. Documentation

../entities/overview.html
../entities/overview.html
https://configcrunch.readthedocs.io/
https://configcrunch.readthedocs.io/
https://github.com/Parakoopa/riptide-repo
../../repo_docs.html

Riptide Documentation

It is located under “<CONFIG>/config.yml”.

Schema

The Schema defines what the contents of the YAML configuration files are.

classmethod Config.schema()→ schema.Schema

proxy

url: str Base-URL for the proxy server. The name of projects and/or services will be appended to it.

For example projectname.riptide.local would route to the project projectname if riptide.local is spec-
ified.

ports

http: int HTTP port that the proxy server should listen on

https: Or[int,bool] HTTPS port that the proxy server should listen on, or false to disable HTTPS

autostart: bool Whether or not the proxy server should auto-start all services for a project if a user enters
the URL for a service.

[autostart_restrict]: List[str] If set, only the IPv4 ip addresses specified by the netmasks in this list
are allowed to trigger the auto-start process via the proxy server. For other clients, projects are not
automatically started. Useful if you share a network with co-workers and don’t want them to start
your projects.

[compression]: bool If true, the proxy server doesn’t decompress any data, and instead passes the com-
pressed data of the backend server (if compressed). Experimental.

engine: str Engine to use, the Python package for the engine must be installed.

repos: List[str] List of URLs to Git repositories containing Riptide Repositories.

update_hosts_file: bool Whether or not Riptide should automatically update the system’s host file.

[project]: Project If a project is loaded, Riptide inserts the project here. Do not manually insert a project
into the actual system configuration file.

performance Various performance optimizations that, when enabled, increase the performance of containers,
but might have some other drawbacks.

Values can be true/false/auto. “auto” enables an optimization, if beneficial on your platform.

dont_sync_named_volumes_with_host: Or[‘auto’,bool] If enabled, volumes, that have a vol-
ume_name set, are not mounted to the host system and are instead created as volumes with the
volume_name. Otherwise they are created as host path volumes only. Enabling this increases per-
formance on some platforms.

Please note, that Riptide does not delete named volume data for old projects. Please consult the
documentation of the engine, on how to do that.

“auto” enables this feature on Mac and Windows, when using the Docker container backend.

Switching this setting on or off breaks existing volumes. They need to be migrated manually.

dont_sync_unimportant_src: Or[‘auto’, bool] Normally all Commands and Services get access to the
entire source directory of a project as volume. If this setting is enabled, unimportant_paths that
are defined in the App are not updated on the host system when changed by the volume. This means
changes to these files are not available, but file access speeds may be drastically increased on some
platforms.

3.2. Configuration Guide 41

../index.html#Riptide-config-files
/config_docs/using_repo/how_repositories.html
/user_docs/3_installing.html#resolving-hostnames-permissions-for-the-etc-hosts-file

Riptide Documentation

“auto” enables this feature on Mac and Windows, when using the Docker container backend.

This feature can be safely switched on or off. Projects need to be restarted for this to take effect.

Example Document:

riptide:
proxy:

url: riptide.local
ports:

http: 80
https: 443

autostart: true
autostart_restrict:
- 127.0.0.1/32

engine: docker
repos:
- https://github.com/theCapypara/riptide-repo.git

update_hosts_file: true
performance:
dont_sync_named_volumes_with_host: auto
dont_sync_unimportant_src: auto

Helper Functions

Helper Functions (also called “Variable Helpers”) can be used in the configuration files to perform some advanced
tasks.

Config.get_config_dir()

Variable Helper

Can be used inside configuration files.

Returns the path to the Riptide system configuration directory

Example usage:

something: '{{ get_config_dir() }}'

Example result:

something: '/home/thomas/.config/riptide'

Config.get_plugin_flag(inp: str)→ any

Variable Helper

Can be used inside configuration files.

Returns the value (usually true/false, but can also be other data) of a flag set by a Riptide plugin.

If the flag or plugin is not found, false is returned.

Parameters inp – plugin-name.flag-name

42 Chapter 3. Documentation

Riptide Documentation

Projects

Projects represent one web development project.

They are loaded from riptide.yml files. Additionally, if a riptide.local.yml exists, it’s contents are merged
on top of the riptide.yml.

A project consists of one app.

Schema

The Schema defines what the contents of the YAML configuration files are.

classmethod Project.schema()→ schema.Schema

name: str Unique name of the project.

src: str Relative path of the source code directory (relative to riptide.yml). Services and Commands only get
access to this directory.

app: App App that this project uses.

[links]: List[str] Links to other projects (list of project names).

Riptide will add all service containers in this project in the TCP/IP networks of all projects specified here.
This way services in your project can communicate with services from other projects and vice-versa. If a
project in this list does not exist, Riptide will ignore it.

Please make sure, that service names are not re-used across projects that are linked this way, this could
lead to unexpected results during service host name resolution.

[default_services]: List[str] List of services to start when running riptide start. If not set, all services are
started. You can also control which services to start using flags. See riptide start –help for more informa-
tion.

[env_files]: List[str] A list of paths to env-files, relative to the project path, that should be read-in by ser-
vices and command when starting. See the read_env_file flag at Service and Command for more
information.

Defaults to [“./.env”].

Example Document:

project:
name: test-project
src: src
app:

$ref: apps/reference-to-app

Helper Functions

Helper Functions (also called “Variable Helpers”) can be used in the configuration files to perform some advanced
tasks.

Project.parent()→ Config

Variable Helper

3.2. Configuration Guide 43

./apps.html

Riptide Documentation

Can be used inside configuration files.

Returns the system configuration document.

Example usage:

something: '{{ parent().proxy.url }}'

Example result:

something: 'riptide.local'

Apps

An app defines all the different services (sub-applications) and commands that are required to run a web development
project for a specific framework or application.

An app consists of a number of services and commands, a list of files that can be imported during the initial setup and
some usage notes.

Schema

The Schema defines what the contents of the YAML configuration files are.

classmethod App.schema()→ schema.Schema

name: str Name describing this app.

[notices]

[usage]: str Text that will be shown when the interactive setup wizard ist started.

This text should describe additional steps needed to finish the setup of the app and general usage
notes.

[installation]: str Text that will be shown, when the user selects a new installation (from scratch) for this
app.

This text should explain how to execute the first-time-setup of this app when using Riptide.

[import]

{key} Files and directories to import during the interactive setup wizard.

target: str Target path that the file or directory should be imported to, relative to the directory of the
riptide.yml

name: str Human-readable name of this import file. This is displayed during the interactive setup
and should explain what kind of file or directory is imported.

[services]

{key}: Service Services for this app.

[commands]

{key}: Command Commands for this app.

44 Chapter 3. Documentation

./services.html
/user_docs/4_project.html

Riptide Documentation

[unimportant_paths]: List[str] Normally all files inside containers are shared with the host (for commands
and services with role ‘src’). This list specifies files that don’t need to be synced with the host. This means,
that these files will only be uploaded to the container on start and changes will not be visible on the host.
Changes that are made on the host file system may also not be visible inside the container. This increases
performance on non-native platforms (Mac and Windows).

This feature is only enabled if the system configuration performance setting
dont_sync_unimportant_src is enabled. If the feature is disabled, all files are shared with
the host. See the documentation for that setting for more information.

All paths are relative to the src of the project. Only directories are supported.

Example Document:

app:
name: example
notices:
usage: Hello World!

import:
example:
target: path/inside/project
name: Example Files

services:
example:

$ref: /service/example
commands:

example:
$ref: /command/example

Helper Functions

Helper Functions (also called “Variable Helpers”) can be used in the configuration files to perform some advanced
tasks.

App.parent()→ Project

Variable Helper

Can be used inside configuration files.

Returns the project that this app belongs to.

Example usage:

something: '{{ parent().src }}'

Example result:

something: '.'

App.get_service_by_role(role_name: str)→ Optional[riptide.config.document.service.Service]

Variable Helper

3.2. Configuration Guide 45

Riptide Documentation

Can be used inside configuration files.

Returns any service with the given role name (first found) or None.

Example usage:

something: '{{ get_service_by_role("main")["$name"] }}'

Example result:

something: 'service1'

Parameters role_name – Role to search for

App.get_services_by_role(role_name: str)→ List[riptide.config.document.service.Service]

Variable Helper

Can be used inside configuration files.

Returns all services with the given role name.

Parameters role_name – Role to search for

Services

A service is the definition of a software container that contains one of the applications required to run the entire app.

Since services are container definitions, they need to contain at least the name of an image to run. All other fields are
optional.

Schema

The Schema defines what the contents of the YAML configuration files are.

classmethod Service.schema()→ schema.Schema

[$name]: str Name as specified in the key of the parent app.

Added by system. DO NOT specify this yourself in the YAML files.

[roles]: List[str] A list of roles for this service. You can use arbitrary strings and get services by their assigned
roles using get_service_by_role().

Some roles are pre-defined and have a special meaning:

main: This service is the main service for the app.

Some commands will default to this service and the proxy URL for this service is shorter.
Usually services are accessible via http://<project_name>--<service_name>.
<proxy_url>, however the main service is accessible via http://
<project_name>.<proxy_url>.

Only one service is allowed to have this role.

46 Chapter 3. Documentation

./app.html

Riptide Documentation

src: The container of this service will have access to the source code of the application.

It’s working directory will be set accordingly.

db: This service is the primary database. A database driver has to be set (see key driver).

This service is then used by Riptide for database management </user_docs/db.html>.

image: str Docker Image to use

[command]: str or map

If this is not set: The default command in the image is used and considered in the “default” command
group (see below).

If it is a string: Command to run inside of the container. Default’s to command defined in image. This
command will be in the “default” command group (see below).

If it is a map: A list of commands that this service supports. Keys are the “command group”, values the
commands to run. Each service must have a command defined for the “default” command group.
You can speficy a command group to use when using riptide start. Default is the “default” command
group, this one is also used by the Riptide Proxy autostart feature. For more information on this see
the –cmd flag of riptide start.

Example:

comamnd:
default: "npm run default"
debug: "npm run debug"

Warning: Avoid quotes (”, ‘) inside of commands, as those may lead to strange side effects.

[port]: int HTTP port that the web service is accessible under. This port will be used by the proxy server to
redirect the traffic.

If the port is not specified, the service is not accessible via proxy server.

[logging] Logging settings. All logs will be placed inside the “_riptide/logs” directory.

[stdout]: bool Whether or not to log the stdout stream of the container’s main command. Default: false

[stderr]: bool Whether or not to log the stderr stream of the container’s main command. Default: false

[paths]

{key}: str Additional text files to mount into the logging directory. Keys are filename’s on host
(without .log) and values are the paths inside the containers.

[commands]

{key}: str Additional commands to start inside the container. Their stdout and stderr will be logged
to the file specified by the key.

[pre_start]: List[str] List of commands to run, before the container starts. They are run sequentially. The
startup will wait for the commands to finish. Exit codes (failures) are ignored.

Each of these commands is run in a separate container based on the service specification. Each command
is run in a “sh” shell.

[post_start]: List[str] List of commands to run, after container starts. They are run sequentially. The startup
will wait for the commands to finish. Exit codes (failures) are ignored.

3.2. Configuration Guide 47

Riptide Documentation

Each of these command’s is run inside the service container (equivalent of docker exec). Each com-
mand is run in a “sh” shell.

[environment] Additional environment variables

{key}: str Key is the name of the variable, value is the value.

[working_directory]: str Working directory for the service, either

• absolute, if an absolute path is given

• relative to the src specified in the project, if the role “src” is set.

• relative to the default working directory from the image, if the role is not set.

Defaults to ..

[config] Additional configuration files to mount. These files are NOT directly mounted. Instead they are pro-
cessed and the resulting file is mounted.

All variables and variable helpers inside the configuration file are processed.

Processed config files are either written to _riptide/processed_config and mounted to containers or (if they
are under the source tree of the project and the service has the role ‘src’) copied to the path in the project
and mounted with the rest of the source tree. A ‘.riptide_info.txt’ is added then to explain the origin of this
file.

Example configuration file (demo.ini):

[demo]
domain={{domain()}}
project_name={{parent().parent().name}}

Resulting file that will be mounted:

[demo]
domain=projectname.riptide.local
project_name=projectname

{key}

from: str Path to the configuration file, relative to any YAML file that was used to load the project
(including “riptide.yml” and all yaml files used inside the repository; all are searched). Absolute
paths are not allowed.

to: str Path to store the configuration file at, relative to working directory of container or absolute.

[force_recreate: bool] False by default. If false, command containers that use this config file will not
try to recreate the processed file if it already exists. If true command containers will also recreate
the file every time they are started. Started services always recreate the processed file on start,
regardless of this setting.

[additional_ports] Additional TCP and/or UDP ports that will be made available on the host system. For
details see section in user guide.

{key}

title: str Title for this port, will be displayed in riptide status

container: int Port number inside the container

48 Chapter 3. Documentation

/user_docs/7_working_with_riptide.html#access-other-tcp-udp-ports

Riptide Documentation

host_start: int First port number on host that Riptide will try to reserve, if the port is already occu-
pied, the next one will be used. This port will be reserved and permanently used for this service
after that.

[additional_volumes] Additional volumes to mount into the container for this command.

{key}

host: str Path on the host system to the volume. Avoid hardcoded absolute paths.

container: str Path inside the container (relative to src of Project or absolute).

[mode]: str Whether to mount the volume read-write (“rw”, default) or read-only (“ro”).

[type]: str Whether this volume is a “directory” (default) or a “file”. Only checked if the file/dir does
not exist yet on the host system. Riptide will then create it with the appropriate type.

[volume_name]: str Name of a named volume for this additional volume. Used instead of “host” if
present and the dont_sync_named_volumes_with_host performance setting is enabled. Volumes
with the same volume_name have the same content, even across projects. As a constraint, the
name of two volumes should only be the same, if the host path specified is also the same, to
ensure the same behaviour regardless of if the performance setting is enabled.

[driver] The database driver configuration, set this only if the role “db” is set.

Detailed documentation can be found in a separate section.

name: str Name of the database driver, must be installed.

config: ??? Specification depends on the database driver.

[run_as_current_user]: bool Whether to run as the user using riptide (True) or image default (False).

Default: True

Riptide will always create the user and group, matching the host user and group, inside the container on
startup, regardless of this setting.

Some images don’t support switching the user, set this to false then. Please note that, if you set this to false
and also specify the role ‘src’, you may run into permission issues.

[run_pre_start_as_current_user]: ‘auto’ or bool Whether to run pre start commands the user using riptide
or image default. Default is ‘auto’ which means the value of run_as_current_user will be used.

[run_post_start_as_current_user]: ‘auto’ or bool Whether to run post start commands the user using riptide
or image default. Default is ‘auto’ which means the value of run_as_current_user will be used.

[allow_full_memlock]: bool Whether to set memlock ulimit to -1:-1 (soft:hard). This is required for some
database services, such as Elasticsearch. Note that engines might ignore this setting, if they don’t support
it.

Default: False

[read_env_file]: bool If enabled, read the environment variables in the env-files defined in the project
(env_files). Default: True

Example Document:

service:
image: node:10
roles:

- main
- src

command: 'node server.js'

(continues on next page)

3.2. Configuration Guide 49

/config_docs/database_drivers.html

Riptide Documentation

(continued from previous page)

port: 1234
logging:
stdout: true
stderr: false
paths:
one: '/foo/bar'

commands:
two: 'varnishlog'

pre_start:
- "echo 'command 1'"
- "echo 'command 2'"

post_start:
- "echo 'command 3'"
- "echo 'command 4'"

environment:
SOMETHING_IMPORTANT: foo

config:
one:
from: ci/config.yml
to: app_config/config.yml

working_directory: www
additional_ports:
one:
title: MySQL Port
container: 3306
host_start: 3006

additional_volumes:
temporary_files:

host: '{{ get_tempdir() }}'
container: /tmp

Helper Functions

Helper Functions (also called “Variable Helpers”) can be used in the configuration files to perform some advanced
tasks.

Service.parent()→ App

Variable Helper

Can be used inside configuration files.

Returns the app that this service belongs to.

Example usage:

something: '{{ parent().notices.usage }}'

Example result:

something: 'This is easy to use.'

Service.system_config()→ Config

50 Chapter 3. Documentation

Riptide Documentation

Variable Helper

Can be used inside configuration files.

Returns the system configuration.

Example usage:

something: '{{ system_config().proxy.ports.http }}'

Example result:

something: '80'

Service.volume_path()→ str

Variable Helper

Can be used inside configuration files.

Returns the (host) path to a service-unique directory for storing container data.

Example usage:

additional_volumes:
cache:

host: '{{ volume_path() }}/cache'
container: '/foo/bar/cache'

Example result:

additional_volumes:
cache:

host: '/home/peter/my_projects/project1/_riptide/data/service_name/cache'
container: '/foo/bar/cache'

Service.get_working_directory()→ str

Variable Helper

Can be used inside configuration files.

Returns the path to the working directory of the service inside the container.

Warning: Does not work as expected for services started via “start-fg”.

Example usage:

something: '{{ get_working_directory() }}'

Example result:

3.2. Configuration Guide 51

Riptide Documentation

something: '/src/working_dir'

Service.domain()→ str

Variable Helper

Can be used inside configuration files.

Returns the full domain name that this service should be available under, without protocol. This is the same
domain as used for the proxy server.

Example usage:

something: 'https://{{ domain() }}'

Example result:

something: 'https://project--service.riptide.local'

Service.os_user()→ str

Variable Helper

Can be used inside configuration files.

Returns the user id of the current user as string (or 0 under Windows).

This is the same id that would be used if “run_as_current_user” was set to true.

Example usage:

something: '{{ os_user() }}'

Example result:

something: '1000'

Service.os_group()→ str

Variable Helper

Can be used inside configuration files.

Returns the id of the current user’s primary group as string (or 0 under Windows).

This is the same id that would be used if “run_as_current_user” was set to true.

Example usage:

something: '{{ os_group() }}'

Example result:

52 Chapter 3. Documentation

Riptide Documentation

something: '100'

Service.host_address()→ str

Variable Helper

Can be used inside configuration files.

Returns the hostname that the host system is reachable under inside the container.

Example usage:

something: '{{ host_address() }}'

Example result:

something: 'host.riptide.internal'

Service.home_path()→ str

Variable Helper

Can be used inside configuration files.

Returns the path to the home directory inside the container.

Example usage:

something: '{{ home_path() }}'

Example result:

something: '/home/riptide'

Service.get_tempdir()→ str

Variable Helper

Can be used inside configuration files.

Returns the path to the system (host!) temporary directory where the user (should) have write access.

Example usage:

something: '{{ get_tempdir() }}'

Example result:

something: '/tmp'

3.2. Configuration Guide 53

Riptide Documentation

Helpfer Functions for configuration files

The helper functions listed here can only be used inside files used with the config setting of services.

riptide.config.service.config_files_helper_functions.read_file(config_file_path:
str,
file_to_read_in:
str)→ str

Reads the contents of a file, relative to the configuration file being processed.

Can not access files in parent directories. Variables in the included file are not processed.

The parameter config_file_path is automatically filled by Riptide.

Example usage:

{{ read_file('example.txt') }}

Example result:

contents of example.txt

Commands

A command is the specification for a container that can be started interactively by the user. This is used to start CLI
command containers.

Commands can either be invoked via riptide cmd or directly via Riptide’s shell integration.

Commands either run as separate containers in the same container network as services (normal commands), or are
started in running service containers.

Schema

The Schema defines what the contents of the YAML configuration files are.

classmethod Command.schema()→ schema.Schema
Can be either a normal command, a command in a service, or an alias command.

classmethod Command.schema_normal()
Normal commands are executed in seperate containers, that are running in the same container network as the
services.

[$name]: str Name as specified in the key of the parent app.

Added by system. DO NOT specify this yourself in the YAML files.

image: str Docker Image to use

[command]: str Command to run inside of the container. Default’s to command defined in image.

Warning: Avoid quotes (”, ‘) inside of the command, as those may lead to strange side effects.

[additional_volumes] Additional volumes to mount into the container for this command.

{key}

host: str Path on the host system to the volume. Avoid hardcoded absolute paths.

54 Chapter 3. Documentation

Riptide Documentation

container: str Path inside the container (relative to src of Project or absolute).

[mode]: str Whether to mount the volume read-write (“rw”, default) or read-only (“ro”).

[type]: str Whether this volume is a “directory” (default) or a “file”. Only checked if the file/dir does
not exist yet on the host system. Riptide will then create it with the appropriate type.

[volume_name]: str Name of a named volume for this additional volume. Used instead of “host” if
present and the dont_sync_named_volumes_with_host performance setting is enabled. Volumes
with the same volume_name have the same content, even across projects. As a constraint, the
name of two volumes should only be the same, if the host path specified is also the same, to
ensure the same behaviour regardless of if the performance setting is enabled.

[environment] Additional environment variables

{key}: str Key is the name of the variable, value is the value.

[config_from_roles]: List[str] List of role names. All files defined under “config” for services matching the
roles are mounted into the command container.

[read_env_file]: bool If enabled, read the environment variables in the env-files defined in the project
(env_files). Default: True

Example Document:

command:
image: riptidepy/php
command: 'php index.php'

classmethod Command.schema_in_service()
Command is run in a running service container.

If the service container is not running, a new container is started based on the definition of the service.

[$name]: str Name as specified in the key of the parent app.

Added by system. DO NOT specify this yourself in the YAML files.

in_service_with_role: str Runs the command in the first service which has this role.

May lead to unexpected results, if multiple services match the role.

command: str Command to run inside of the container.

Warning: Avoid quotes (”, ‘) inside of the command, as those may lead to strange side effects.

[environment] Additional environment variables. The container also has access to the environment of the
service. Variables in the current user’s env will override those values and variables defined here, will
override all other.

{key}: str Key is the name of the variable, value is the value.

[read_env_file]: bool If enabled, read the environment variables in the env-files defined in the project
(env_files). Default: True

Example Document:

command:
in_service_with_role: php
command: 'php index.php'

3.2. Configuration Guide 55

Riptide Documentation

classmethod Command.schema_alias()
Aliases another command.

[$name]: str Name as specified in the key of the parent app.

Added by system. DO NOT specify this yourself in the YAML files.

aliases: str Name of the command that is aliased by this command.

Helper Functions

Helper Functions (also called “Variable Helpers”) can be used in the configuration files to perform some advanced
tasks.

Command.parent()→ App

Variable Helper

Can be used inside configuration files.

Returns the app that this command belongs to.

Example usage:

something: '{{ parent().notices.usage }}'

Example result:

something: 'This is easy to use.'

Command.system_config()→ Config

Variable Helper

Can be used inside configuration files.

Returns the system configuration.

Example usage:

something: '{{ system_config().proxy.ports.http }}'

Example result:

something: '80'

Command.volume_path()→ str

Variable Helper

Can be used inside configuration files.

Returns the (host) path to a command-unique directory for storing container data.

56 Chapter 3. Documentation

Riptide Documentation

Example usage:

additional_volumes:
command_cache:

host: '{{ volume_path() }}/command_cache'
container: '/foo/bar/cache'

Example result:

additional_volumes:
command_cache:

host: '/home/peter/my_projects/project1/_riptide/cmd_data/command_name/
→˓command_cache'

container: '/foo/bar/cache'

Command.os_user()→ str

Variable Helper

Can be used inside configuration files.

Returns the user id of the current user as string (or 0 under Windows).

This is the same id that would be used if “run_as_current_user” was set to true.

Example usage:

something: '{{ os_user() }}'

Example result:

something: '1000'

Command.os_group()→ str

Variable Helper

Can be used inside configuration files.

Returns the id of the current user’s primary group as string (or 0 under Windows).

This is the same id that would be used if “run_as_current_user” was set to true.

Example usage:

something: '{{ os_group() }}'

Example result:

something: '100'

Command.host_address()→ str

Variable Helper

3.2. Configuration Guide 57

Riptide Documentation

Can be used inside configuration files.

Returns the hostname that the host system is reachable under inside the container.

Example usage:

something: '{{ host_address() }}'

Example result:

something: 'host.riptide.internal'

Command.home_path()→ str

Variable Helper

Can be used inside configuration files.

Returns the path to the home directory inside the container.

Example usage:

something: '{{ home_path() }}'

Example result:

something: '/home/riptide'

Command.get_tempdir()→ str

Variable Helper

Can be used inside configuration files.

Returns the path to the system (host!) temporary directory where the user (should) have write access.

Example usage:

something: '{{ get_tempdir() }}'

Example result:

something: '/tmp'

3.2.3 Examples

NodeJS Hello World

This section will guide you through the setup of a simple NodeJS project using the Riptide repository.

This guide assumes you have Riptide fully set up, with shell integration enabled and a running proxy server (for this
guide we assume https://riptide.local as base URL of your proxy server). It also assumes you have the
repos part of the configuration set to only the Riptide Community Repository (the default).

58 Chapter 3. Documentation

Riptide Documentation

NodeJS does NOT need to be installed for this guide.

Preparing the project

For this guide we will set up a very simple Express-based web server. You can probably adapt this guide to more
complex applications.

Create a new directory and create an index.js in it with the following contents:

// Source: https://expressjs.com/starter/hello-world.html
var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World!');

});

app.listen(3000, function () {
console.log('Example app listening on port 3000!');

});

Create a package.json containing express as a dependency:

{
"name": "js-helloworld",
"dependencies": {
"express": "^4.16.4"

}
}

Creating a basic riptide.yml

Create a riptide.yml with the following contents:

project:
name: js-helloworld
src: .
app:
name: js-helloworld
services:

nodejs:
image: node:10
command: 'node index.js'
port: 3000
roles:
- src
- main

This file contains one project named js-helloworld. We specify with src that the source code for this project is
in the same directory that the riptide.yml is in.

This project contains an app called js-helloworld. This app has one service called nodejs. This service is the
container specification for our Hello World app.

The service nodejs needs a Docker image with Node.js in it, so we specify the image node:10. Our script is in
the index.js, so we tell Riptide to run node index.js as the command of our service.

3.2. Configuration Guide 59

../entities/projects.html
../entities/projects.html
../entities/apps.html
../entities/apps.html
../entities/services.html
../entities/services.html
../entities/services.html

Riptide Documentation

Our Hello World app (http) runs on port 3000, so we tell Riptide this by setting port to it.

The final step is adding roles. Roles define the behaviour of services.

The src role gives our service access to the source code (the index.js file). The main role sets the service as the
main service for our project.

Adding commands for NPM

Next we need to add the node and npm commands to our project, so that we can run npm to install express from the
package.json.

Add the following under app in the riptide.yml:

commands:
node:
$ref: /command/node/10

npm:
$ref: /command/npm/node10

This adds two new commands, one containing NodeJS and one containing npm. All npm processes started will also
have access to the directory .npm in your home directory and your .npmrc.

Those commands come from the Riptide repository, if you want to know how they work, visit the repository:

• /command/node/10

• /command/npm/node10

Running the project setup

Run riptide setup --skip to initiate the project. Since we have not added any setup instructions or files to
import, we just skip the setup with the --skip flag.

Installing requirements

If you have the shell integration enabled, leave and enter the directory again, this will load the configured npm
and node commands. You can now run npm install, which will install express and create a directory named
node_modules.

Starting the project

Since the project’s dependencies (express) are now installed, you can open the front page of the Proxy server
(https://riptide.local). You will find a new project called js-helloworld.

Click on the link and the project will start. After it starts you will see the “Hello World!” message telling you, that the
project works.

Enable logging

If you want to enable logging, add the following lines to the service nodejs:

60 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/command/node
https://github.com/Parakoopa/riptide-repo/tree/master/command/npm

Riptide Documentation

logging:
stdout: true
stderr: true

You can restart the project by using riptide restart. After the restart you will find logging files in _riptide/
logs/nodejs.

Adding files for import and setup instructions

For our simple example there are no files to import and we don’t really need any setup instructions.

However the riptide setup command supports usage notes and importing files, as you can see in the User
Documentation. You can also see an example project there.

To add usage notes, add the following to the app:

notices:
usage: >-
This is a demo usage note.

You can also use variables here: {{ services.nodejs.image }}

installation: >-
This will be shown when the user chooses to set up a new project.

The user (and you) can view those notes by calling riptide notes. They are also shown during riptide
setup. The first one is shown in the beginning during the setup and the second if the uses chooses to install a new
project. Use the first notice for general usage notes and post installation steps and the second as a guide for setting up
completely new projects.

You can also specify files to import. During riptide setup the user will be asked if they want to import the file
or directory. When they choose to do it, Riptide will copy the files and directories inside the project.

Example:

import:
example:
target: "readme.txt"
name: Readme file

If you run riptide setup --force you can run the setup wizard for your project again.

You will see the notice, and if you choose to setup an existing project, you can specify a “Readme file” to import to
readme.txt. Try it out and you will see, that Riptide copies the directory or file you specify to readme.txt
inside your project.

PHP Hello World

This section will guide you through the setup of a simple PHP project using the Riptide repository.

We will use an Apache web server, the other guide (PHP with Database, Redis and Composer) shows how to use an
Nginx server.

This guide assumes you have Riptide fully set up, with shell integration enabled and a running proxy server (for this
guide we assume https://riptide.local as base URL of your proxy server). It also assumes you have the
repos part of the configuration set to only the Riptide Community Repository (the default).

PHP and Apache do NOT need to be installed for this guide.

3.2. Configuration Guide 61

../../user_docs/6_project.html
../../user_docs/6_project.html
./php_complex.html

Riptide Documentation

Preparing the project

For this guide we will set up a very simple PHP file.

Create a new directory and create an index.php in it with the following contents:

<?php echo "Hello World!"; ?>

Creating a basic riptide.yml

Create a riptide.yml with the following contents:

project:
name: php-helloworld
src: .
app:
name: php-helloworld
services:

php:
$ref: /service/php/7.2/apache
roles:
- src
- main

This file contains one project named php-helloworld. We specify with src that the source code for this project
is in the same directory that the riptide.yml is in.

This project contains an app called php-helloworld. This app has one service called php. This service is the
container specification for our Hello World app.

The service php needs Apache and PHP so we tell it to load /service/php/7.2/apache from the Riptide
repository. You can find more details and the YAML file for this on Github.

The final step is adding roles. Roles define the behaviour of services.

The src role gives our service access to the source code (the index.php file). The main role sets the service as
the main service for our project.

Running the project setup

Run riptide setup --skip to initiate the project. Since we have not added any setup instructions or files to
import, we just skip the setup with the --skip flag.

Starting the project

Open the front page of the Proxy server (https://riptide.local). You will find a new project called
php-helloworld.

Click on the link and the project will start. After it starts you will see the “Hello World!” message telling you, that the
project works.

Enable logging

If you want to enable additional logging, add the following lines to the service php:

62 Chapter 3. Documentation

../entities/projects.html
../entities/projects.html
../entities/apps.html
../entities/apps.html
../entities/services.html
../entities/services.html
../entities/services.html
https://github.com/Parakoopa/riptide-repo/tree/master/service/php

Riptide Documentation

logging:
stdout: true
stderr: true

You can restart the project by using riptide restart. After the restart you will find logging files in _riptide/
logs/php. Apache error log is in stderr.log and Apache access log in stdout.log.

Adding files for import and setup instructions

For our simple example there are no files to import and we don’t really need any setup instructions.

However the riptide setup command supports usage notes and importing files, as you can see in the User
Documentation. You can also see an example project there.

To add usage notes, add the following to the app:

notices:
usage: >-
This is a demo usage note.

You can also use variables here: {{ services.php.image }}

installation: >-
This will be shown when the user chooses to set up a new project.

The user (and you) can view those notes by calling riptide notes. They are also shown during riptide
setup. The first one is shown in the beginning during the setup and the second if the uses chooses to install a new
project. Use the first notice for general usage notes and post installation steps and the second as a guide for setting up
completely new projects.

You can also specify files to import. During riptide setup the user will be asked if they want to import the file
or directory. When they choose to do it, Riptide will copy the files and directories inside the project.

Example:

import:
example:
target: "readme.txt"
name: Readme file

If you run riptide setup --force you can run the setup wizard for your project again.

You will see the notice, and if you choose to setup an existing project, you can specify a “Readme file” to import to
readme.txt. Try it out and you will see, that Riptide copies the directory or file you specify to readme.txt
inside your project.

PHP with Database, Redis and Composer

This section will guide you through the setup of a complex PHP project using the Riptide repository.

We will use a Nginx web server and PHP-FPM.

This guide assumes you have Riptide fully set up, with shell integration enabled and a running proxy server (for this
guide we assume https://riptide.local as base URL of your proxy server). It also assumes you have the
repos part of the configuration set to only the Riptide Community Repository (the default).

PHP and Nginx do NOT need to be installed for this guide.

3.2. Configuration Guide 63

../../user_docs/6_project.html
../../user_docs/6_project.html

Riptide Documentation

Preparing the project

For this guide we will set up a PHP file.

Create a new directory and create an index.php in it with the following contents:

<?php
require_once "vendor/autoload.php";

$hello = new Rivsen\Demo\Hello();
echo $hello->hello();

This PHP file tries to load the autoloader supplied by Composer and then tries to load a class from the rivsen/hello-
world package.

We will also be setting up Redis and a MySQL database, however our simple PHP example will not use them. You
can experiment with your own PHP code to access them, this guide will give you everything you need for this (aside
from PHP knowledge).

We also need a composer.json with the requirement for this package:

{
"name": "phpcomplex-helloworld",
"require": {

"rivsen/hello-world": "*"
}

}

Instead you can also run composer require rivsen/hello-world later on, after we added the composer
command.

Creating a riptide.yml with nginx and php-fpm

Create a riptide.yml with the following contents:

project:
name: phpcomplex-helloworld
src: .
app:
name: phpcomplex-helloworld
services:

nginx:
$ref: /service/nginx/latest
roles:
- src
- main

config:
default_nginx_conf:
from: default_nginx.conf
to: '/etc/nginx/conf.d/default.conf'

pre_start:
Wait for php (otherwise nginx crashes) :(
- "until ping -c5 php &>/dev/null; do :; done"

php:
$ref: /service/php/7.2/fpm
roles:

(continues on next page)

64 Chapter 3. Documentation

https://github.com/Rivsen/hello-world
https://github.com/Rivsen/hello-world

Riptide Documentation

(continued from previous page)

- src
- php

The PHP service is nearly the same as in the riptide.yml of the simple example.

We just added the role php and switched the reference to the fpm variant. This variant does not container Apache but
instead PHP and PHP-FPM. The role php is used, so that we can later use the /command/php/from-service
command from the repository.

We added the new service nginx. This service is also based on a service from the repository and also get’s access to
the source code.

In config we tell Riptide to take the default_nginx.conf and put it to /etc/nginx/conf.d/default.
conf in the container.

The default_nginx.conf contains the server settings for Nginx. We connect PHP and Nginx there. This is the
contents of this file:

server {
listen 80;
root /src;
index index.php;
server_name {{ domain() }};
location ~* \.php$ {

fastcgi_index index.php;
fastcgi_pass php:9000;
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;

}
}

As you can see, we tell Nginx to use the service php as a FastCGI backend for all php files. The service php contains
php-fpm and nginx will communicate with it to process php files.

Since this is a config file, variables and variable helper functions can be used in this file. In this case we use
the domain() helper. Riptide will process the file, look for all template strings ({{ something }}) and re-
place them. The helper domain() returns the domain of the proxy server that our project is accessible under. So
when the service is started this line will actually say something like server_name phpcomplex-helloworld.
riptide.local;.

In pre_start for nginx we make sure that nginx doesn’t get started before php does, because otherwise nginx
would crash.

Adding commands for Composer

Next we need to add the php and composer commands to our project, so that we can run composer to install
express from the composer.json.

Add the following under app in the riptide.yml:

commands:
php:
$ref: /command/php/from-service

composer:
$ref: /command/composer/with-host-links

3.2. Configuration Guide 65

./php.html

Riptide Documentation

This adds two new commands, one containing PHP and one containing PHP and the newest Composer version. All
composer processes started will also have access to the directory .composer in your home directory and .ssh.

Those commands come from the Riptide repository, if you want to know how they work, visit the repository:

• /command/php/from-service

• /command/composer/with-host-links

Installing requirements

If you have the shell integration enabled, leave and enter the directory again, this will load the configured php and
composer commands. You can now run composer install, which will install the dependencies and create a
directory named vendor.

Running the project setup

Run riptide setup --skip to initiate the project. Since we have not added any setup instructions or files to
import, we just skip the setup with the --skip flag.

Starting the project

Open the front page of the Proxy server (https://riptide.local). You will find a new project called
php-helloworld.

Click on the link and the project will start. After it starts you will see the “Hello World!” message telling you, that the
project works.

Adding Redis

To add redis, add a new service under services:

redis:
$ref: /service/redis/4.0

You can start this service using the Riptide CLI:

$ riptide start
Starting services...

nginx: 2/2|| Already started!
php : 2/2|| Already started!
redis: 4/6| | Checking...

Try to write PHP code to access Redis! Since the service is named redis, you will be able to access Redis under the
hostname redis.

Adding MySQL

To add a MySQL database, add a new service under services:

66 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://github.com/Parakoopa/riptide-repo/tree/master/command/composer

Riptide Documentation

db:
$ref: /service/mysql/5.6
driver:
name: mysql
config:

database: db
password: password

You can specify the database and password. Username is always root.

This is using the MySQL service from the repository and the MySQL database driver. The database driver enables the
database management features of Riptide.

Database driver are separate packages that need to be installed. The package for MySQL can be installed via pip
install riptide-db-mysql (Github).

When you start the database via riptide start you can access it.

Try to write PHP code to access the database! Since the service is named db, you will be able to access MySQL under
the hostname db.

The database driver also provides a way to directly access the database. When you enter riptide status you can
see the port on which you can access the database from the host system.

Enable logging

See the simple example.

Adding files for import and setup instructions

See the simple example.

Sphinx Documentations

This section will guide you through the setup of a sphinx project using the Riptide repository.

Sphinx is a documentation generation tool. This documentation uses Sphinx, so we will use this documentation as an
example.

The project we set up uses sphinx-autobuild as a file-watcher and HTTP server for the documentation.

This guide assumes you have Riptide fully set up, with shell integration enabled and a running proxy server (for this
guide we assume https://riptide.local as base URL of your proxy server). It also assumes you have the
repos part of the configuration set to only the Riptide Community Repository (the default).

Sphinx and Python do NOT need to be installed for this guide.

Preparing the project

For this guide we will use this documentation as an example.

Clone https://github.com/Parakoopa/riptide-docs.git somewhere via Git, or download the repos-
itory via Github.

Delete the riptide.yml file (we don’t want Spoilers :)).

3.2. Configuration Guide 67

/../../user_docs/db.html
https://github.com/Parakoopa/riptide-db-mysql
./php.html
./php.html
https://pypi.org/project/sphinx-autobuild/

Riptide Documentation

Creating a basic riptide.yml

Create a riptide.yml with the following contents:

project:
name: riptidedocs
src: .
app:
$ref: /app/sphinx/latest
services:

sphinx:
environment:
REQUIREMENTS_FILE: "requirements_docs.txt"
SPHINX_SOURCE: source
SPHINX_BUILD: build

This file contains one project named riptidedocs. We specify with src that the source code for this project is in
the same directory that the riptide.yml is in.

This project contains an app. We load this app from the repository (/app/sphinx/latest, Github
<https://github.com/Parakoopa/riptide-repo/tree/master/app/sphinx>) This app has one service called sphinx. This
service is the container specification for our Hello World app.

The service sphinx is already specified in the app we loaded from the repository.

However we need to set some important environment variables. SPHINX_SOURCE and SPHINX_BUILD contain
the paths to the source and build directories. With REQUIREMENTS_FILE an additional file can be specified that
contains requirements that will be installed on start. In our case, Riptide is installed before the documentation server
starts.

Running the project setup

Run riptide setup --skip to initiate the project. Since we have not added any setup instructions or files to
import (and /app/sphinx/latest also doesn’t define any), we just skip the setup with the --skip flag.

Starting the project

Since the project’s dependencies (express) are now installed, you can open the front page of the Proxy server
(https://riptide.local). You will find a new project called riptidedocs.

Click on the link and the project will start. After the start you may get a Gateway Timeout. Wait a while and refresh
and you should see this documentation.

Commands

/app/sphinx/latest also defines commands. You can list them with riptide cmd.

Magento

This section will guide you through the setup of a Magento 2 project using the Riptide repository.

Magento is an eCommerce platform written in PHP. Riptide has templates for both Magento 1 and Magento 2 projects.
This guide will only describe the Magento 2 app. In the Repository Documentation you can find more information
about the Magento 1 and Magento 2 templates.

68 Chapter 3. Documentation

../entities/projects.html
../entities/projects.html
../entities/apps.html
../entities/apps.html
../entities/services.html
../entities/services.html
../entities/services.html
../../repo_docs.html#apps

Riptide Documentation

This guide is an example on how to use Riptide with more complex applications and a guide for setting up Magento 2.

This guide assumes you have Riptide fully set up, with shell integration enabled and a running proxy server (for this
guide we assume https://riptide.local as base URL of your proxy server). It also assumes you have the
repos part of the configuration set to only the Riptide Community Repository (the default).

PHP or Magento do NOT need to be installed for this guide.

Creating a project

To create a project, create a new file named riptide.yml with the following contents:

project:
name: magento-demo
src: src
app:
$ref: /app/magento2/ce/2.3

This file defines a project named magento-demo. The project uses the app /app/magento2/ce/2.3 from the
Riptide repository (Github).

We choose the src directory to install Magento in.

The Magento 2 app comes with PHP-FPM, Nginx, Varnish, MySQL, Redis, RabbitMQ and Mailhog as mail catcher.
The default configuration should be suited for most needs, but the next steps of this guide will also show you, how to
customize your Magento 2 installation.

You can change the version (2.3) if you want to install another Magento version.

The default database name is magento2, the user is root and the password magento2. If you want to change
these settings, you have to change the database driver configuration for the db service like so:

project:
name: magento-demo
src: src
app:
$ref: /app/magento2/ce/2.3
services:

db:
driver:
config:

password: demo
database: demo

Project setup

To get started, run the project setup (riptide setup). You will be asked, if you want to start with an existing
option or install a new Magento 2 installation.

For this guide we will choose to install a new Magento 2 shop. If you choose to install an existing shop, Riptide will
ask you to import a MySQL dump and media files (pub/media).

Magento installation

After the project setup, when selecting to install a new project, the following message will be displayed to you:

3.2. Configuration Guide 69

../entities/projects.html
../entities/apps.html
https://github.com/Parakoopa/riptide-repo/tree/master/app/magento2

Riptide Documentation

> NEW PROJECT
Okay! Riptide can't guide you through the installation automatically.
Please read these notes on how to run a first-time-installation for magento2-ce-2.3.

Installation instructions:
To install Magento run the following commands on the command line:

0. Download the Magento source code (replace with 'enterprise-edition' if you
→˓want):

mkdir -p <project_directory_root>/src
cd <project_directory_root>/src
riptide cmd composer create-project --repository=https://repo.magento.com/ --

→˓ignore-platform-reqs magento/project-community-edition ./

1. Dump the autoloader
cd ./
riptide cmd composer dump-autoload

2. Start the database and redis
riptide start -s redis,db

3. Install Magento using the CLI.
riptide cmd magento setup:install \

--base-url=https://magento-demo.riptide.local/ \
--db-host=db \
--db-name=demo \
--db-user=root \
--db-password=demo \
--admin-firstname=Admin \
--admin-lastname=Admin \
--admin-email=email@yourcompany.com \
--admin-user=admin \
--admin-password=admin123 \
--language=en_US \
--currency=USD \
--timezone=America/Chicago \
--use-rewrites=1

3. (Optional) install sample data
riptide cmd magento sampledata:deploy

4. Run setup:upgrade
riptide restart -s redis
riptide cmd magento setup:upgrade

You can change the settings in step 3 to your likings, see the installation guide
→˓at

https://devdocs.magento.com/guides/v2.3/install-gde/install/cli/install-cli.html

These instructions may vary for you. Follow the instructions shown to you to set up your shop.

If shell integration is correctly set up you can also omit the prefix riptide cmd from commands. You may need to
close and reopen your terminal once for this to work.

If you get started with an existing project, follow the project setup for existing projects. Please note that you need to
follow the instructions shown at the beginning of the setup wizard then, You can also show the instructions again by
running riptide setup. This will show both the instructions for new installations (on the top) and for existing
projects (“General Usage notice”) on the bottom.

70 Chapter 3. Documentation

Riptide Documentation

Starting Magento

After you installed Magento, go to the front page of your proxy server (eg. https://riptide.local). You will
find the various services for the Magento 2 shop there:

The service named varnish is the main entrypoint for your shop. Click on the link. This will open your installed
Magento 2 shop.

Mailhog

The Magento app comes with a mail catcher (Mailhog). You can find it by accessing the link of the mail service on
the proxy server front page. This mail catcher will collect all emails sent by the Magento shop.

Commands (magento, composer, n98-magerun2)

The Magento app comes with a variety of commands for you to use. You can list them with riptide cmd:

Commands:
- php
- magerun
- n98-magerun (alias for magerun)
- n98-magerun2 (alias for magerun)
- magerun2 (alias for magerun)
- mysql
- magento
- composer

You have access to the PHP interpreter used for the shop (php). The mysql command gives you direct access to the
database (see below). magento is the bin/magento command. You can NOT access bin/magento directly.
Instead use the magento command provided by Riptide:

$ magento cache:flush
Flushed cache types:
config
layout
block_html
collections
reflection
db_ddl
compiled_config
eav
customer_notification
config_integration
config_integration_api

(continues on next page)

3.2. Configuration Guide 71

Riptide Documentation

(continued from previous page)

full_page
config_webservice
translate
vertex

In addition to those commands, you also have access to composer (composer) and n98-magerun2 by Netz98.

Additionally you can open a console to the containers for the services by using riptide exec <service_name,
eg. riptide exec php. You can also open a root console by passing the flag --root.

Accessing the database

To access the database, you have to start it first (either via the Proxy server or by running riptide start.

You can access the database directly simply by executing mysql. Additionally you can access the database using your
favorite SQL client. To get the port you can access the database from, see this section of the User Documentation.

Adding own services and commands

If you want to add your own services and commands, simply add new entries under services or commands in the
project file:

project:
name: magento-demo
src: src
app:

$ref: /app/magento2/ce/2.3
services:
db:
driver:

config:
password: demo
database: demo

styleguide:
image: node:8
roles:
- src

working_directory: styleguide
command: node_modules/.bin/gulp serve
port: 3000
pre_start:
- npm install
- node_modules/.bin/gulp clean
- node_modules/.bin/gulp build

commands:
node:
$ref: /command/node/8

npm:
$ref: /command/npm/node8

72 Chapter 3. Documentation

https://github.com/netz98/n98-magerun2
../../user_docs/7_working_with_riptide.html#access-other-tcp-udp-ports

Riptide Documentation

Configuration management

The Magento Riptide app comes with support for the configuration management tool mageconfigsync. If installed the
file app/etc/config.yml with the environment dev is loaded into the database on each start of the project.

If you want to run your own configuration management tools, add the appropriate commands to the post_start step of
the php service.

3.3 Riptide Community Repository

This is the documentation for all entities in the Riptide Community Repository.

This repository is the default repository for Riptide. You can use the apps, services and commands in your own
projects.

More information about entities and repositories, and guide’s on how to use the entities from this repository, can be
found in the Configuration Guide.

Is something missing from the repository? Feel free to fork the repository and add the things you need. Or set up
your own and use both. If you built something, please contribute to the community repository to make it even better!

3.3.1 Apps

Angular

Angular, platform for building mobile and desktop web applications.

Minimal project configuration for a basic Angular app.

Run riptide cmd npm install before trying to start the project.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/app/angular

Index

• Angular

– /app/angular/base

* Services

* Commands

/app/angular/base

Angular base variant, based on Node 12.

Services

www

Accessible via Proxy?: yes

3.3. Riptide Community Repository 73

https://github.com/punkstar/mageconfigsync
https://github.com/Parakoopa/riptide-repo
../config_docs.html
https://angular.io/
https://github.com/Parakoopa/riptide-repo/tree/master/app/angular

Riptide Documentation

Runs as the user using Riptide?: yes

The ng serve Angular webpack server.

Roles

Has roles: src, main

Has access to source code (src). This is the main service.

Commands

node

Based on: /command/node/12

NodeJS, version 12.

npm

Based on: /command/npm/node12

NPM, latest version using Node 12.

yarn

Based on: /command/yarn/node12

Yarn package manager, latest version using Node 12.

ng

Based on: /command/node/12

Angular CLI. Runs the ng command of the node_modules directory.

Grav

Grav Web-platform.

Web server is based on Apache. The Riptide app comes with a mail catcher.

Comes with a default user (name: riptide, password 12345).

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/app/grav

Index

• Grav

– /app/grav/base

74 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/command/npm
https://github.com/Parakoopa/riptide-repo/tree/master/command/npm
https://github.com/Parakoopa/riptide-repo/tree/master/command/yarn
https://github.com/Parakoopa/riptide-repo/tree/master/command/npm
https://getgrav.org/
https://github.com/Parakoopa/riptide-repo/tree/master/app/grav

Riptide Documentation

* Imports

* Services

* Commands

/app/grav/base

Grav base variant.

Imports

Key Title Target Description
images Images images Image files
pages CMS Pages user/pages CMS pages
plugins Plugin configuration user/plugins Configuration and code for some plugins

Services

php

Based on: /service/php/7.2/apache

PHP Version 7.2 with the Apache 2 webserver.

Roles

Has roles: src, php, main

Has access to source code (src) and is marked as main PHP service (php). This is the main service.

Config

If you want to change additional Magento settings, we recommend adding additional bin/magento config:set
to post_start or using a module for configuration management.

Name Target Should be replaced? Description
user_config user/config/system.yamlmaybe (if your page requires custom

configuration)
System configuration file.

secu-
rity_config

user/config/security.yamlmaybe Default security configuration (salt).

rip-
tide_account

user/accounts/riptide.yamlno Default system user (riptide). Pass-
word is 12345.

3.3. Riptide Community Repository 75

https://github.com/Parakoopa/riptide-repo/tree/master/service/php

Riptide Documentation

mail

Based on: /service/mailhog/latest

Mailhog, used as mail catcher.

Roles

Has roles: mail

Role required for PHP service.

Commands

php

Based on: /command/php/from-service

PHP command.

grav

bin/grav command.

Runs in the php service.

composer

Based on: /command/composer/with-host-links

Composer package manager.

npm

Based on: /command/npm/node12

NPM JavaScript package manager. Might be useful for frontend building.

node

Based on: /command/node/12

NodeJS. Might be useful for frontend building.

Magento 1

Magento eCommerce platform, version 1.

The Riptide app comes with Redis and a mail catcher.

Web server is based on Apache.

76 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog
https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://github.com/Parakoopa/riptide-repo/tree/master/command/composer
https://github.com/Parakoopa/riptide-repo/tree/master/command/npm
https://github.com/Parakoopa/riptide-repo/tree/master/command/node
https://magento.com/

Riptide Documentation

Uses mageconfigsync for configuration management, if installed. If you want to use mageconfigsync with Riptide
create a file app/etc/config.yml with an environment dev.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/app/magento1

Index

• Magento 1

– /app/magento1/base

* Imports

* Services

* Commands

– /app/magento1/ce/1.9

– /app/magento1/ee/1.14

/app/magento1/base

Magento 1 base variant.

Imports

Key Title Target Description
media_files Media Files media Media files, such as product images

Services

www

Based on: /service/php/7.2/apache

Apache and PHP 7.2.

Roles

Has roles: src, php, main

Has access to source code (src) and is marked as main PHP service (php).

Config

If you want to change additional Magento settings, we recommend using a module for configuration management.

3.3. Riptide Community Repository 77

https://github.com/punkstar/mageconfigsync
https://github.com/Parakoopa/riptide-repo/tree/master/app/magento1
https://github.com/Parakoopa/riptide-repo/tree/master/service/php

Riptide Documentation

Name Target Should be re-
placed?

Description

lo-
cal_xml

app/etc/local.xml no Magento 1 local.xml, contains all database and base url set-
tings, etc. pp.

Post Start

Waits for magerun db:info to work (= db to start up).

Runs mageconfigsync to load configuration from the dev environment from the file app/etc/config.yml. If
mageconfigsync is not installed this step silently fails.

Clears cache.

db

Based on: /service/mysql/5.6

MySQL 5.6 database.

Driver

Configuration:

User: root

Password: magento1

Database: magento1

redis

Based on: /service/redis/latest

Redis, used for Cache and Session.

rabbitmq

Based on: /service/rabbitmq/3.6

RabbitMQ, may be used as message broker.

mail

Based on: /service/mailhog/latest

Mailhog, used as mail catcher.

78 Chapter 3. Documentation

https://github.com/punkstar/mageconfigsync
https://github.com/Parakoopa/riptide-repo/tree/master/service/mysql
https://github.com/Parakoopa/riptide-repo/tree/master/service/redis
https://github.com/Parakoopa/riptide-repo/tree/master/service/rabbitmq
https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog

Riptide Documentation

Roles

Has roles: mail

Role required for PHP service.

Commands

php

Based on: /command/php/from-service

PHP command.

magerun, n98-magerun

n98-magerun by Netz98 for Magento development.

Additional volumes

Name Source Source path Target path Description
lo-
cal_xml

Config from another
service

(config ‘local_xml’ from service
‘php’)

app/etc/local.xml local.xml for Ma-
gento

config Home Directory ~/.n98-magerun ~/.n98-magerun
(ro)

Magerun configu-
ration

composer

Based on: /command/composer/with-host-links

Composer package manager.

mysql

Based on: /command/mysql/from-service-db

MySQL client that load’s the configuration from the service with role db.

The client auto-connects to the database from this service.

/app/magento1/ce/1.9

Based on: /app/magento1/base

Configuration for different versions of Magento Open Source, version 1.

3.3. Riptide Community Repository 79

https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://github.com/netz98/n98-magerun
https://github.com/Parakoopa/riptide-repo/tree/master/command/composer
https://github.com/Parakoopa/riptide-repo/tree/master/command/mysql

Riptide Documentation

/app/magento1/ee/1.14

Based on: /app/magento1/base

Configuration for different versions of Magento Commerce, version 1.

Magento 2

Magento eCommerce platform, version 2.

The Riptide app comes with Varnish, Redis, RabbitMQ and a mail catcher.

Web server is based on Nginx. The “Apache” variants contain web servers based on Apache.

Uses mageconfigsync for configuration management, if installed. If you want to use mageconfigsync with Riptide
create a file app/etc/config.yml with an environment dev.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/app/magento2

Index

• Magento 2

– /app/magento2/base

* Imports

* Services

* Commands

– /app/magento2/apache

* Services

– /app/magento2/ce/X

– /app/magento2/ee/X

– /app/magento2/ce/X-apache

– /app/magento2/ee/X-apache

/app/magento2/base

Magento 2 base variant, using Nginx.

Imports

Key Title Target Description
media_files Media Files pub/media Media files, such as product images

Services

80 Chapter 3. Documentation

https://magento.com/
https://github.com/punkstar/mageconfigsync
https://github.com/Parakoopa/riptide-repo/tree/master/app/magento2

Riptide Documentation

php

Based on: /service/php/7.2/fpm

PHP-FPM Version 7.2

Roles

Has roles: src, php

Has access to source code (src) and is marked as main PHP service (php).

Config

If you want to change additional Magento settings, we recommend adding additional bin/magento config:set
to post_start or using a module for configuration management.

Name Target Should be re-
placed?

Description

env_php app/etc/env.php no Magento 2 env.php, contains all database and redis settings,
etc. pp.

Post Start

Waits for bin/magento to work (= redis and db to start up).

Changes settings, such as the base url.

Runs mageconfigsync to load configuration from the dev environment from the file app/etc/config.yml. If
mageconfigsync is not installed this step silently fails.

Clears cache.

www

Based on: /service/nginx/latest

Nginx, linked with the PHP service.

Reads the nginx.conf.sample provided by Magento for additional server configuration.

Roles

Has roles: src, varnish

Has access to source code (src) and is marked as backend server for Varnish (varnish).

3.3. Riptide Community Repository 81

https://github.com/Parakoopa/riptide-repo/tree/master/service/php
https://github.com/punkstar/mageconfigsync
https://github.com/Parakoopa/riptide-repo/tree/master/service/nginx

Riptide Documentation

Config

Name Target Should be re-
placed?

Description

env_php app/etc/env.php no Magento 2 env.php, contains all database and redis
settings, etc. pp.

ma-
gento_nginx_conf

/etc/nginx/conf.d/default.confno Nginx server settings

Pre Start

Waits for php to start. Would crash otherwise.

varnish

Based on: /service/varnish/4

Varnish cache server. Uses www as backend server.

Roles

Has roles: main

Config

Key Target Should be replaced? Description
vcl /etc/varnish/default.vcl maybe Magento 2 default VCL

db

Based on: /service/mysql/5.6

MySQL 5.6 database.

Driver

Configuration:

User: root

Password: magento2

Database: magento2

82 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/service/varnish
https://github.com/Parakoopa/riptide-repo/tree/master/service/mysql

Riptide Documentation

redis

Based on: /service/redis/latest

Redis, used for Cache and Session.

rabbitmq

Based on: /service/rabbitmq/3.6

RabbitMQ, may be used as message broker.

mail

Based on: /service/mailhog/latest

Mailhog, used as mail catcher.

Roles

Has roles: mail

Role required for PHP service.

Commands

php

Based on: /command/php/from-service

PHP command.

magerun, magerun2, n98-magerun, n98-magerun2

n98-magerun2 by Netz98 for Magento development.

Additional volumes

Name Source Source path Target path Description
env_php Config from another

service
(config ‘env_php’ from service
‘php’)

app/etc/env.php env.php for Ma-
gento

config Home Directory ~/.n98-magerun2 ~/.n98-magerun2
(ro)

Magerun2 configu-
ration

magento

bin/magento command. Not included in image, read from working directory instead.

3.3. Riptide Community Repository 83

https://github.com/Parakoopa/riptide-repo/tree/master/service/redis
https://github.com/Parakoopa/riptide-repo/tree/master/service/rabbitmq
https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog
https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://github.com/netz98/n98-magerun2

Riptide Documentation

Additional volumes

Name Source Source path Target path Description
env_php Config from another ser-

vice
(config ‘env_php’ from service
‘php’)

app/etc/env.php env.php for Ma-
gento

composer

Based on: /command/composer/with-host-links

Composer package manager.

mysql

Based on: /command/mysql/from-service-db

MySQL client that load’s the configuration from the service with role db.

The client auto-connects to the database from this service.

/app/magento2/apache

Based on: /app/magento2/base

Variant of Magento using the Apache web-server instead.

Services

php

Based on: /service/php/7.2/apache

Apache web server + PHP.

Roles

Has roles: src, php, varnish

Has access to source code (src), is marked as main PHP service (php) and is marked as backend server for Varnish
(varnish).

www

Is removed.

The apache web-server with a PHP CGI module is in the “php” service.

84 Chapter 3. Documentation

https://github.com/Parakoopa/riptide-repo/tree/master/command/composer
https://github.com/Parakoopa/riptide-repo/tree/master/command/mysql
https://github.com/Parakoopa/riptide-repo/tree/master/service/php

Riptide Documentation

/app/magento2/ce/X

Based on: /app/magento2/base

Configuration for different versions of Magento Open Source, version 2. Using Nginx.

Available versions:

• 2.3

/app/magento2/ee/X

Based on: /app/magento2/base

Configuration for different versions of Magento Commerce, version 2. Using Nginx.

Available versions:

• 2.3

/app/magento2/ce/X-apache

Based on: /app/magento2/apache

Configuration for different versions of Magento Open Source, version 2. Using Apache.

Available versions:

• 2.3

/app/magento2/ee/X-apache

Based on: /app/magento2/apache

Configuration for different versions of Magento Commerce, version 2. Using Apache.

Available versions:

• 2.3

Sphinx

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, written by Georg Brandl and
licensed under the BSD license.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/app/sphinx

Index

• Sphinx

– /app/sphinx/latest

* Services

* Commands

3.3. Riptide Community Repository 85

http://www.sphinx-doc.org/en/master/
https://github.com/Parakoopa/riptide-repo/tree/master/app/sphinx

Riptide Documentation

/app/sphinx/latest

Latest version of Sphinx and sphinx-autobuild.

sphinx-autobuild is a file watcher and HTTP server for Sphinx.

Change the SPHINX_SOURCE and SPHINX_BULD of the sphinx service.

Please note that, after you started this project, it takes a while to actually finish starting. In the meantime you will get
a Gateway Timeout.

Services

sphinx

Accessible via Proxy?: yes

Runs as the user using Riptide?: yes

sphinx-autobuild server.

Uses the riptidepy/sphinx image, based on Python 3.7.

Environment variables

Key Re-
quired?

Already set? Example
Value(s)

Description

SPHINX_SOURCE yes yes (default:
“source”)

source Directory that contains the conf.py

SPHINX_BUILD yes yes (default:
“build”)

build Build output directory

REQUIRE-
MENTS_FILE

no no require-
ments.txt

This file is read on startup and the dependencies
in it are installed first.

Additional volumes

Name Source Source path Target path Description
py_packagesData

folder
_rip-
tide/data/___/site_packages

~/.local/lib/python3.7/site-
packages

Installed Python packages (see RE-
QUIREMENTS_FILE)

Commands

make, sphinx-build, sphinx-autogen, sphinx-apidoc

make, sphinx-build, sphinx-autogen and sphinx-apidoc commands.

Use image of sphinx service.

86 Chapter 3. Documentation

https://pypi.org/project/sphinx-autobuild/
https://hub.docker.com/r/riptidepy/sphinx

Riptide Documentation

Additional volumes

See sphinx service.

sphinx-doctest

Runs the sphinx doctest command:

python -msphinx -b doctest {{ parent().services.sphinx.get_working_directory() }}/{{
→˓parent().services.sphinx.environment.SPHINX_SOURCE }}

Uses image of sphinx service.

Additional volumes

See sphinx service.

3.3.2 Services

Elasticsearch

Elasticsearch is a search engine based on Lucene.

When using this service please make sure to override the image to match the exact Elasticsearch version you want to
use.

The template provided is tested for Elasticsearch 6.

Requires Riptide >= 0.2.7

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/elasticsearch

Index

• Elasticsearch

– /service/elasticsearch/latest

/service/elasticsearch/latest

Runs as the user using Riptide?: yes

Accessible via Proxy?: no

Latest version of Elasticsearch.

Mailhog

Mailhog is a mail catching application that can be used to test SMTP functionality of applications.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog

3.3. Riptide Community Repository 87

https://www.elastic.co
https://github.com/Parakoopa/riptide-repo/tree/master/service/elasticsearch
https://github.com/mailhog/MailHog
https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog

Riptide Documentation

Index

• Mailhog

– /service/mailhog/latest

/service/mailhog/latest

Runs as the user using Riptide?: yes

Accessible via Proxy?: yes

Latest version of Mailhog.

MySQL

MySQL relational database management system.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/mysql

Index

• MySQL

– /service/mysql/base

– /service/mysql/5.4, /service/mysql/5.5, /service/mysql/5.6, /service/
mysql/5.7, /service/mysql/8.0, /service/mysql/9.0

/service/mysql/base

Accessible via Proxy?: no

Runs as the user using Riptide?: no

Latest version of MySQL. Configure database name and password via the driver settings.

Suggested Roles

Has roles: db

This service is a database and has the role db set. See the driver section for more details.

Additional volumes

Name Source Source path Target
path

Description

n/a Data
folder

_rip-
tide/data/___/___

/var/lib/mysql Database data, managed by Riptide’s database manage-
ment tools

88 Chapter 3. Documentation

https://www.mysql.com/
https://github.com/Parakoopa/riptide-repo/tree/master/service/mysql

Riptide Documentation

Additional ports

Name Title Container Port Host Start Port Description
mysql MySQL Port 3306 3306 MySQL Port

Post Start

Waits for the database to finish start-up.

Driver

Database driver: mysql <https://github.com/Parakoopa/riptide-db-mysql>

Configuration:

User: root

Password: mysql

Database: mysql

/service/mysql/5.4, /service/mysql/5.5, /service/mysql/5.6, /service/mysql/5.7, /
service/mysql/8.0, /service/mysql/9.0

Based on: /service/mysql/base

Additional versions of MySQL. If you need other versions, use the base version and change the image tag.

nginx

nginx web server.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/nginx

Index

• nginx

– /service/nginx/latest

/service/nginx/latest

Accessible via Proxy?: yes

Runs as the user using Riptide?: no

Latest version of nginx. Make sure to override the file /etc/nginx/conf.d/default.conf with a server
configuration.

3.3. Riptide Community Repository 89

https://www.nginx.com/
https://github.com/Parakoopa/riptide-repo/tree/master/service/nginx

Riptide Documentation

Config

Name Target Should be replaced? Description
nginx_conf /etc/nginx/nginx.conf no, add files to conf.d instead Main Nginx configuration
(Not provided!) /etc/nginx/conf.d/default.conf yes Nginx server configuration

php

PHP scripting language. Uses the riptidepy/php images.

There are variants for PHP 7.1 - 7.4. Some include the Apache web server (apache variants), others include php-fpm
(php-fpm variants) and some only the interpreter (cli variants).

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/php

Index

• php

– /service/php/base

– /service/php/base-apache

– /service/php/7.1/apache, /service/php/7.2/apache, /service/php/7.3/
apache, /service/php/7.4/apache

– /service/php/7.1/cli, /service/php/7.2/cli, /service/php/7.3/cli, /
service/php/7.4/cli

– /service/php/7.1/fpm, /service/php/7.2/fpm, /service/php/7.3/fpm, /
service/php/7.4/fpm

/service/php/base

Accessible via Proxy?: no

Runs as the user using Riptide?: yes

Base of all php variants.

Role Requirements

Role: mail

The service to use as SMTP server (eg. /service/mailhog). If you don’t have a SMTP service, add the role to this
service instead. You will not be able to send emails then.

Suggested Roles

Suggested roles: src, php

This service should have access to the source code of the application via the role src.

90 Chapter 3. Documentation

https://php.net/
https://hub.docker.com/r/riptidepy/php
https://github.com/Parakoopa/riptide-repo/tree/master/service/php
https://github.com/Parakoopa/riptide-repo/tree/master/service/mailhog

Riptide Documentation

If this is your main PHP service, add the role php. You can then use the /command/php/from-service template for
commands.

Environment variables

Key Re-
quired?

Already set? Example Value(s) Description

XDE-
BUG_CONFIG

no yes, (default: “remote_host={{
host_address() }}”)

remote_host={{
host_address() }

Configuration
for Xdebug

PHP_IDE_CONFIGno yes, (default: “serverName=riptide-{{
parent().parent().name }}”)

serverName=riptide-{{ par-
ent().parent().name }}

PhpStorm path
mapping key

Config

Key Target Should be replaced? Description
php_ini /etc/php.d/z_riptide.ini no, add own files to the php.d di-

rectory
Disables opcache

msmt-
prc

/etc/msmtprc no SMTP configuration, see “Role Require-
ments”

/service/php/base-apache

Based on: /service/php/base

Runs as the user using Riptide?: yes, via environment variables APACHE_RUN_USER and APACHE_RUN_GROUP

Accessible via Proxy?: yes

Variant that contains the Apache web server and integrates the PHP CGI module.

Environment variables

Key Re-
quired?

Already set? Example Value(s) Description

APACHE_RUN_USERyes yes, (default: “#{{
os_user() }}”)

#{{ os_user() }}, www-data,
#1000

User to run
Apache as

APACHE_RUN_GROUPyes yes, (default: “#{{
os_group() }}”)

#{{ os_group() }}, www-
data, #1000

Group to run
Apache as

/service/php/7.1/apache, /service/php/7.2/apache, /service/php/7.3/apache, /
service/php/7.4/apache

Based on: /service/php/base-apache

Variant that contains the Apache web server and integrates the PHP CGI module. PHP 7.1 - 7.3.

3.3. Riptide Community Repository 91

https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://xdebug.org/docs/remote
https://blog.jetbrains.com/phpstorm/2012/03/new-in-4-0-easier-debugging-of-remote-php-command-line-scripts/
https://blog.jetbrains.com/phpstorm/2012/03/new-in-4-0-easier-debugging-of-remote-php-command-line-scripts/
https://httpd.apache.org/
https://httpd.apache.org/

Riptide Documentation

/service/php/7.1/cli, /service/php/7.2/cli, /service/php/7.3/cli, /service/php/7.
4/cli

Based on: /service/php/base

Variant that only contains the PHP interpreter. PHP 7.1 - 7.3.

/service/php/7.1/fpm, /service/php/7.2/fpm, /service/php/7.3/fpm, /service/php/7.
4/fpm

Based on: /service/php/base

Variant that contains PHP-FPM. PHP 7.1 - 7.3.

RabbitMQ

RabbitMQ message broker.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/rabbitmq

Index

• RabbitMQ

– /service/rabbitmq/base

– /service/rabbitmq/3.6

/service/rabbitmq/base

Accessible via Proxy?: no

Runs as the user using Riptide?: no

Latest version of RabbitMQ.

Environment variables

Key Re-
quired?

Already set? Example
Value(s)

Descrip-
tion

RABBITMQ_NODENAME yes yes, (default: “rab-
bit@localhost”)

rabbit@localhost

RAB-
BITMQ_DEFAULT_USER

yes yes, (default: “rabbit”) rabbit

RAB-
BITMQ_DEFAULT_PASS

yes yes, (default: “rabbit”) rabbit

RAB-
BITMQ_USE_LONGNAME

no yes, (default: “true”) true, false

92 Chapter 3. Documentation

https://www.rabbitmq.com/
https://github.com/Parakoopa/riptide-repo/tree/master/service/rabbitmq
mailto:rabbit@localhost
mailto:rabbit@localhost
mailto:rabbit@localhost

Riptide Documentation

Additional volumes

Name Source Source path Target path Description
rabbitmq Data folder _riptide/data/___/rabbitmq /var/lib/rabbitmq RabbitMQ Data

/service/rabbitmq/3.6

Based on: /service/rabbitmq/base

Version 3.6 of RabbitMQ.

Redis

Redis is an open source, in-memory data structure store, used as a database, cache and message broker.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/redis

Index

• Redis

– /service/redis/base

– /service/redis/4.0

/service/redis/base

Accessible via Proxy?: no

Runs as the user using Riptide?: no

Latest version of Redis.

/service/redis/4.0

Based on: /service/redis/base

Version 4.0 of Redis.

Varnish

Varnish Cache is an HTTP caching server.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/service/varnish

Index

• Varnish

– /service/varnish/4

3.3. Riptide Community Repository 93

https://redis.io/
https://github.com/Parakoopa/riptide-repo/tree/master/service/redis
https://varnish-cache.org/
https://github.com/Parakoopa/riptide-repo/tree/master/service/varnish

Riptide Documentation

/service/varnish/4

Accessible via Proxy?: yes

Runs as the user using Riptide?: no

Varnish version 4. Make sure to replace the default VCL.

Role Requirements

Role: varnish

Use this in your VCL as backend server:

backend default {
.host = "{{ parent().get_service_by_role('varnish')['$name'] }}";

}

Your varnish target should have an HTTP server running on port 80.

Suggested Roles

Suggested roles: main

Environment variables

Key Re-
quired?

Already set? Example
Value(s)

Description

VCL_CONFIGyes yes (default:
“/etc/varnish/default.vcl”)

/etc/varnish/default.vclPath to the VCL, should NOT be
changed

Config

Key Target Should be replaced? Description
vcl /etc/varnish/default.vcl yes VCL configuration for Varnish

Logging

Name Type Path / Command Description
varnish.log Command varnishlog varnishlog

Pre Start

Wait’s for the backend service server to be reachable (otherwise varnish would crash).

94 Chapter 3. Documentation

Riptide Documentation

3.3.3 Commands

Composer

Composer PHP package manager.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/composer

Index

• Composer

– /command/composer/base

– /command/composer/with-host-links

/command/composer/base

Latest version of Composer. No links to host system (see with-host-links).

Environment variables

Key Re-
quired?

Already set? Example
Value(s)

Description

COM-
POSER_HOME

no yes (default: “{{ home_path()
}}/.composer”)

/home/riptide/.composerDirectory that composer config
and cache is stored in

Additional volumes

Name Source Source path Target path Description
tmp Other /tmp ({{ get_tempdir() }}) /tmp Temporary directory

/command/composer/with-host-links

Based on: /command/composer/base

Composer with volumes for the user’s .composer and .ssh directories.

Additional volumes

Name Source Source path Target path Description
composer Home directory ~/.composer ~/.composer .composer
ssh Home directory ~/.ssh ~/.ssh SSH configuration

3.3. Riptide Community Repository 95

https://getcomposer.org/
https://github.com/Parakoopa/riptide-repo/tree/master/command/composer

Riptide Documentation

MySQL

MySQL relational database management system.

Client command to be used with /service/mysql.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/mysql

Index

• MySQL

– /command/mysql/from-service-db

/command/mysql/from-service-db

MySQL client that load’s the configuration from the service with role db.

The client auto-connects to the database from this service.

Role Requirements

Role: db

MySQL service that the configuration will be loaded from.

Node.js

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/node

Index

• Node.js

– /command/node/base

– /command/node/X

/command/node/base

Latest Node.js version. Change image tag for other versions.

/command/node/X

Based on: /command/node/base

Different Node.jS versions. Available versions:

• 8

96 Chapter 3. Documentation

https://www.mysql.com/
https://github.com/Parakoopa/riptide-repo/tree/master/service/mysql
https://github.com/Parakoopa/riptide-repo/tree/master/command/mysql
https://nodejs.org/en/
https://github.com/Parakoopa/riptide-repo/tree/master/command/node

Riptide Documentation

• 10

• 11

• 12

Other versions can be used by changing the version of the image.

NPM

NPM Node.js package manager.

This command template can also be used for other Node.js commands (by changing the command), if they require
access to the npm cache.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/npm

Index

• NPM

– /command/npm/base

– /command/npm/nodeX

/command/npm/base

Latest NPM version with the latest Node.js version.

Additional volumes

Name Source Source path Target path Description
npm Home directory ~/.npm ~/.npm NPM cache
npmrc Home directory ~/.npmrc ~/.npmrc NPM config
ssh Home directory ~/.ssh ~/.ssh SSH configuration

/command/npm/nodeX

Based on: /command/npm/base

Latest NPM with different Node.js versions. Avaiable Node.js versions:

• 8

• 10

• 11

• 12

3.3. Riptide Community Repository 97

https://www.npmjs.com/
https://github.com/Parakoopa/riptide-repo/tree/master/command/npm

Riptide Documentation

php

PHP scripting language. Uses the riptidepy/php images.

There are variants for PHP 7.1 - 7.3 and one that uses the configuration of the service with role php.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/php

Index

• php

– /command/php/base

– /command/php/X

– /command/php/from-service

/command/php/base

Latest PHP version.

Environment variables

Key Re-
quired?

Already set? Example Value(s) Description

XDE-
BUG_CONFIG

no yes, (default: “remote_host={{
host_address() }}”)

remote_host={{
host_address() }

Configuration
for Xdebug

PHP_IDE_CONFIGno yes, (default: “serverName=riptide-{{
parent().parent().name }}”)

serverName=riptide-{{ par-
ent().parent().name }}

PhpStorm path
mapping key

/command/php/X

Based on: /command/php/base

Different PHP versions. Available versions:

• 7.1

• 7.2

• 7.3

/command/php/from-service

Based on: /command/php/base

Uses the PHP configuration of a service with role php. This variant can also be used to send mails.

98 Chapter 3. Documentation

https://php.net/
https://hub.docker.com/r/riptidepy/php
https://github.com/Parakoopa/riptide-repo/tree/master/command/php
https://xdebug.org/docs/remote
https://blog.jetbrains.com/phpstorm/2012/03/new-in-4-0-easier-debugging-of-remote-php-command-line-scripts/
https://blog.jetbrains.com/phpstorm/2012/03/new-in-4-0-easier-debugging-of-remote-php-command-line-scripts/

Riptide Documentation

Role Requirements

Role: php

A service based on /service/php.

Additional volumes

These volumes are used from the PHP service’s config.

Name Source Source path Target path Description
php_ini Config from another

service
(config ‘php_ini’ from service with
role ‘php’)

/etc/php.d/z_riptide.iniPHP service php
settings

msmt-
prc

Config from another
service

(config ‘msmtprc’ from service with
role ‘php’)

/etc/msmtprc SMTP configura-
tion

Yarn

Yarn Node.js package manager.

This command template can also be used for other Node.js commands (by changing the command), if they require
access to the yarn cache.

Link to entity in repository: https://github.com/Parakoopa/riptide-repo/tree/master/command/yarn

Index

• Yarn

– /command/yarn/base

– /command/yarn/nodeX

/command/yarn/base

Latest Yarn version with the latest Node.js version.

Additional volumes

Name Source Source path Target path Description
yarn Home directory ~/.yarn ~/.yarn Yarn cache
yarnrc Home directory ~/.yarnrc ~/.yarnrc Yarn config
ssh Home directory ~/.ssh ~/.ssh SSH configuration

/command/yarn/nodeX

Based on: /command/npm/base

Latest Yarn with different Node.js versions. Avaiable Node.js versions:

3.3. Riptide Community Repository 99

https://github.com/Parakoopa/riptide-repo/tree/master/service/php
https://yarnpkg.com/
https://github.com/Parakoopa/riptide-repo/tree/master/command/yarn

Riptide Documentation

• 8

• 10

• 11

• 12

3.4 Plugin Development

Riptide can be extended with plugins. To write a plugin, create a Python package, that has the following entry point
defined:

[riptide.plugin]
php-xdebug=riptide_plugin_php_xdebug.plugin:PhpXdebugPlugin

Replace php-xdebugwith the identifier of your plugin and the rest with the entry point of your plugin, implementing
AbstractPlugin (see below).

3.4.1 Plugin Interface

class riptide.plugin.abstract.AbstractPlugin
Bases: abc.ABC

A Riptide plugin extends the functionality of Riptide.

For this it can:

• Add new CLI commands to riptide-cli.

• Set flags, which can be retrieved from the configuration using a variable helper

• Directly read and modify all parts of the configuration entities loaded.

• Communicate with the loaded engine.

after_load_cli(main_cli_object)
Called after the last CLI of Riptide CLI has loaded. Can be used to add CLI commands using Click. The
passed object is the main CLI command object.

after_load_engine(engine: riptide.engine.abstract.AbstractEngine)
After the engine was loaded. engine is the interface of the configured engine.

after_reload_config(config: Config)
Called whenever a project is loaded or if the initial configuration is loaded without a project.

get_flag_value(config: Config, flag_name: str)→ any
Return the value of a requested plugin flag. Return False if not defined. The current config is passed,
to give a context about the calling project. Please note, that flag values are usually loaded before af-
ter_reload_config!

3.5 Updates

This section documents breaking changes that were introduced by Riptide updates.

100 Chapter 3. Documentation

Riptide Documentation

3.5.1 lib 0.2.0

Using configuration files in commands

Previously it was possible to use configuration files defined for services in commands, using the following syntax:

app:
services:

example:
config:
env_php:
from: assets/env.php
to: '{{ get_working_directory() }}/app/etc/env.php'

commands:
dummy:
additional_volumes:
env_php:
host: "{{ parent().services.example.config('env_php') }}"
container: "{{ parent().services.example.get_working_directory() }}/app/

→˓etc/env.php"

This is no longer possible, due to issues related to this functionality. Instead, you can use this new syntax, which will
add all configuration files of the services tagged with the listed roles to the command. This achieves the same goal.

app:
services:

example:
roles:
- myrole

config:
env_php:
from: assets/env.php
to: '{{ get_working_directory() }}/app/etc/env.php'

commands:
dummy:

config_from_roles:
- myrole

The variable helper function config for Services has been removed. config_from_roles was added to the
schema for Commands.

Detailed examples can be seen in the Riptide Community Repository commit ee1a766.

The Riptide Community Repository contains a branch 0.1 that is automatically used when running riptide
update with versions older than 0.2. This branch is still compatible with the old version, but will not receive
updates.

3.5.2 0.5.0

Riptide 0.5.0 introduces Performance optimizations. These include the change, that under Mac and Windows most
volumes are now no longer stored on the host file system, but in internal named volumes of the VM instead.

This also affects volumes of projects, which were previously stored under _riptde/data in projects, such as
MySQL databases.

If you need the data, you need to manually export the data of these volumes before upgrading Riptide and then import
it after the upgrade.

3.5. Updates 101

../../config_docs/entities/services.html
../../config_docs/entities/services.html
https://github.com/Parakoopa/riptide-repo/commit/ee1a766c476cf3bdab0fe422f7dae1c4b1869fc2
../user_docs/performance_optimizations.html

Riptide Documentation

Linux is not affected by these changes (unless the performance option is manually enabled). This guide assumes
you are using MacOS or Windows.

Exporting and importing databases

To export and import databases, use the riptide db-export and riptide-db-import commands, see Man-
aging Databases.

Exporting and importing other data

Riptide does not offer export or import functionality for other data.

I already upgraded, what now?

If you already upgraded Riptide to 0.5.0, you can disable the performance option and access the data again to export
it. You can then enable it again and import the data.

To disable the performance optimization, run riptide config-edit-user and set performance.
dont_sync_named_volumes_with_host to false.

To enable it again after the export, set performance.dont_sync_named_volumes_with_host to auto

If you unable to migrate, you can also leave the performance option disabled.

• genindex

• modindex

• search

102 Chapter 3. Documentation

../user_docs/db.html
../user_docs/db.html

Index

A
AbstractPlugin (class in riptide.plugin.abstract),

100
after_load_cli() (rip-

tide.plugin.abstract.AbstractPlugin method),
100

after_load_engine() (rip-
tide.plugin.abstract.AbstractPlugin method),
100

after_reload_config() (rip-
tide.plugin.abstract.AbstractPlugin method),
100

D
domain() (riptide.config.document.service.Service

method), 52

G
get_config_dir() (rip-

tide.config.document.config.Config method),
42

get_flag_value() (rip-
tide.plugin.abstract.AbstractPlugin method),
100

get_plugin_flag() (rip-
tide.config.document.config.Config method),
42

get_service_by_role() (rip-
tide.config.document.app.App method), 45

get_services_by_role() (rip-
tide.config.document.app.App method), 46

get_tempdir() (rip-
tide.config.document.command.Command
method), 58

get_tempdir() (rip-
tide.config.document.service.Service method),
53

get_working_directory() (rip-
tide.config.document.service.Service method),
51

H
home_path() (riptide.config.document.command.Command

method), 58
home_path() (riptide.config.document.service.Service

method), 53
host_address() (rip-

tide.config.document.command.Command
method), 57

host_address() (rip-
tide.config.document.service.Service method),
53

O
os_group() (riptide.config.document.command.Command

method), 57
os_group() (riptide.config.document.service.Service

method), 52
os_user() (riptide.config.document.command.Command

method), 57
os_user() (riptide.config.document.service.Service

method), 52

P
parent() (riptide.config.document.app.App method),

45
parent() (riptide.config.document.command.Command

method), 56
parent() (riptide.config.document.project.Project

method), 43
parent() (riptide.config.document.service.Service

method), 50

R
read_file() (in module rip-

tide.config.service.config_files_helper_functions),
54

S
schema() (riptide.config.document.app.App class

method), 44

103

Riptide Documentation

schema() (riptide.config.document.command.Command
class method), 54

schema() (riptide.config.document.config.Config class
method), 41

schema() (riptide.config.document.project.Project
class method), 43

schema() (riptide.config.document.service.Service
class method), 46

schema_alias() (rip-
tide.config.document.command.Command
class method), 55

schema_in_service() (rip-
tide.config.document.command.Command
class method), 55

schema_normal() (rip-
tide.config.document.command.Command
class method), 54

system_config() (rip-
tide.config.document.command.Command
method), 56

system_config() (rip-
tide.config.document.service.Service method),
50

V
volume_path() (rip-

tide.config.document.command.Command
method), 56

volume_path() (rip-
tide.config.document.service.Service method),
51

104 Index

	Hello World!
	Riptide config files
	Documentation
	User Documentation
	Configuration Guide
	Riptide Community Repository
	Plugin Development
	Updates

	Index

